[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing & Abstracting::
Publication Ethics::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing & Abstracting
DOAJ
GOOGLE SCHOLAR
..
:: Volume 29, Issue 2 (3-2024) ::
__Armaghane Danesh__ 2024, 29(2): 278-294 Back to browse issues page
The Comparison of Two Treatment Planning Systems (Core PLAN and TiGRT) Using the Figure of Merit Equivalent Uniform Dose(fEUD) for Optimization of Radiotherapy Treatment
S Cheraghi1 , S Azhang2 , Z Hormozi-Moghaddam 3, L Alipour Firoozabadi4
1- Department of Radiation Sciences, Iran University of Medical Sciences, Tehran, Iran
2- Department of Radiology, Iran University of Medical Sciences, Tehran, Iran
3- Department of Radiation Sciences, Iran University of Medical Sciences, Tehran, Iran , Zhormozi69@gmail.com
4- Department of Medical Physics, Ahvaz Jundishapour University, Ahvaz, Iran
Abstract:   (828 Views)
Background & aim: Choosing the right treatment design system plays a significant role in effective treatment. The limitation of dose distribution to the target organs is one of the main goals of radiation therapy. Therefore, the purpose of the present study was to determine and compare two treatment planning systems, TiGRT and CorePLAN, in 3D adaptive radiotherapy using the fEUD competency index to optimize the treatment.

Methods: The present retrospective study was conducted in 2023. In order to compare the merit of treatment in two treatment design systems, Core PLAN and TiGRT, 20 treatment plans were designed for the treatment of head and neck and prostate tumors. The values ​​of OAR and EUD of the studied target organs were calculated and compared.
Dose-volume histogram and the results of each treatment plan were compared and analyzed using the fEUD index, the collected data were analyzed using Student's t-tests

Results: The production plans of head and neck and prostate tumors had similar and comparable performance for the two treatment design systems (p=0.46), but in the Core PLAN system, due to the higher fEUD index compared to TiGRT, healthy tissues were less at risk of radiation. Using the fEUD index as well as biologically based models and parameters while using treatment design systems highlights treatment optimization in radiation therapy.

Conclusion: fEUD index could be used to compare the results of two treatment design systems. Based on this index, the CorePLAN treatment system is suitable for complex or challenging treatments, where optimization and quality of the treatment plan are very important, but TiGRT is suitable for routine treatments where efficiency and ease of use are important.


Keywords: fEUD index, Treatment Planning System, Radiotherapy
Full-Text [PDF 579 kb]   (107 Downloads)    
Type of Study: Research | Subject: Radiology
Received: 2023/10/4 | Accepted: 2024/02/26 | Published: 2024/03/16
References
1. Appenzoller LM, Michalski JM, Thorstad WL, Mutic S, Moore KL. Predicting dose-volume histograms for organs-at-risk in IMRT planning. Med Phys 2012; 39(12): 7446-61.## [DOI:10.1118/1.4761864] [PMID]
2. Hansen CR, Crijns W, Hussein M, Rossi L, Gallego P, Verbakel W, Unkelbach J, Thwaites D, Heijmen B. Radiotherapy Treatment plannINg study Guidelines (RATING): A framework for setting up and reporting on scientific treatment planning studies. Radiother Oncol 2020;153: 67-78. ## [DOI:10.1016/j.radonc.2020.09.033] [PMID]
3. Hernandez V, Hansen CR, Widesott L, Bäck A, Canters R, Fusella M, Götstedt J, Jurado-Bruggeman D, Mukumoto N, Kaplan LP, Koniarová I, Piotrowski T, Placidi L, Vaniqui A, Jornet N. What is plan quality in radiotherapy? The importance of evaluating dose metrics, complexity, and robustness of treatment plans. Radiother Oncol 2020; 153: 26-33. ## [DOI:10.1016/j.radonc.2020.09.038] [PMID]
4. Suit H, du Bois W. The importance of optimal treatment planning in radiation therapy. Int J Radiat Oncol Biol Phys 1991; 21(6): 1471-8. ## [DOI:10.1016/0360-3016(91)90321-T] [PMID]
5. Fang FM, Tsai WL, Chen HC, Hsu HC, Hsiung CY, Chien CY, Ko SF. Intensity-modulated or conformal radiotherapy improves the quality of life of patients with nasopharyngeal carcinoma: comparisons of four radiotherapy techniques. Cancer 2007; 109(2): 313-21. ## [DOI:10.1002/cncr.22396] [PMID]
6. Claus F, Duthoy W, Boterberg T, De Gersem W, Huys J, Vermeersch H, De Neve W. Intensity modulated radiation therapy for oropharyngeal and oral cavity tumors: clinical use and experience. Oral Oncol 2002; 38(6): 597-604. ## [DOI:10.1016/S1368-8375(01)00111-7] [PMID]
7. Rezaeyan A, Ghaffari H, Mahdavi SR, NikoofarA. Audiometric findings in patients with head and neck chemoradiotherapy and radiotherapy: short-term outcomes. Int J Radiat Res 2019; 17: 633-41. ##
8. Yu T, Zhang Q, Zheng T, Shi H, Liu Y, Feng S, Hao M, Ye L, Wu X, Yang C. The Effectiveness of Intensity Modulated Radiation Therapy versus Three-Dimensional Radiation Therapy in Prostate Cancer: A Meta-Analysis of the Literatures. PLoS One 2016; 11(5): e0154499. ## [DOI:10.1371/journal.pone.0154499] [PMID] []
9. Fogliata A, Nicolini G, Alber M, Asell M, Clivio A, Dobler B, et al. On the performances of different IMRT Treatment Planning Systems for selected paediatric cases. Radiat Oncol 2007; 2: 7. ## [DOI:10.1186/1748-717X-2-7] [PMID] []
10. Hall EJ, Wuu CS. Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 2003; 56(1): 83-8. ## [DOI:10.1016/S0360-3016(03)00073-7] [PMID]
11. Lee N, Xia P, Fischbein NJ, Akazawa P, Akazawa C, Quivey JM. Intensity-modulated radiation therapy for head-and-neck cancer: the UCSF experience focusing on target volume delineation. Int J Radiat Oncol Biol Phys 2003; 57(1): 49-60. ## [DOI:10.1016/S0360-3016(03)00405-X] [PMID]
12. Lee TF, Fang FM, Chao PJ, Su TJ, Wang LK, Leung SW. Dosimetric comparisons of helical tomotherapy and step-and-shoot intensity-modulated radiotherapy in nasopharyngeal carcinoma. Radiother Oncol 2008; 89(1): 89-96. ## [DOI:10.1016/j.radonc.2008.05.010] [PMID]
13. Krishnan J, Rao S, Hegde S, Shetty J. A dosimetric comparison of double arc volumetric modulated arc therapy with large field intensity modulated radiation therapy for head and neck cancer. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology 2015; 4(04): 353. ## [DOI:10.4236/ijmpcero.2015.44042]
14. Akihiro N, Kunihiko T, Kazunori F, Yuichi S, Takuya N, Tadanori A, et al. The Reproducibility of Patient Setup for Head and Neck Cancers Treated with Image-Guided and Intensity-Modulated Radiation Therapies Using Thermoplastic Immobilization Device. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology 2013; 02; 117-24. ## [DOI:10.4236/ijmpcero.2013.24016]
15. Kirollos M. Re: Axel Heidenreich, Gunnar Aus, Michel Bolla, et al. EAU guidelines on prostate cancer. Eur Urol 2008; 53: 68-80. Eur Urol. 2008; 54(3): 693-5; author reply 695-7. ## [DOI:10.1016/j.eururo.2008.03.002] [PMID]
16. Cooperberg MR, Broering JM, Carroll PR. Time trends and local variation in primary treatment of localized prostate cancer. Journal of Clinical Oncology 2010; 28(7): 1117. ## [DOI:10.1200/JCO.2009.26.0133] [PMID] []
17. Kramer KM, Bennett CL, Pickard AS, Lyons EA, Wolf MS, McKoy JM, Knight SJ. Patient preferences in prostate cancer: a clinician's guide to understanding health utilities. Clin Prostate Cancer. 2005 Jun;4(1):15-23. doi: 10.3816/cgc.2005.n.007. PMID: 15992457. ## [DOI:10.3816/CGC.2005.n.007] [PMID]
18. Bakiu E, Telhaj E, Kozma E, Ruçi F, Malkaj P. Comparison of 3D CRT and IMRT Tratment Plans. Acta Inform Med 2013; 21(3): 211-2. ## [DOI:10.5455/aim.2013.21.211-212] [PMID] []
19. Ling CC, Zhang P, Archambault Y, Bocanek J, Tang G, Losasso T. Commissioning and quality assurance of RapidArc radiotherapy delivery system. Int J Radiat Oncol Biol Phys 2008; 72(2): 575-81. ## [DOI:10.1016/j.ijrobp.2008.05.060] [PMID]
20. Thwaites D. Accuracy required and achievable in radiotherapy dosimetry: Have modern technology and techniques changed our views? Journal of Physics Conference Series 2013; 10: 444. ## [DOI:10.1088/1742-6596/444/1/012006]
21. Hernandez V, Saez J, Pasler M, Jurado-Bruggeman D, Jornet N. Comparison of complexity metrics for multi-institutional evaluations of treatment plans in radiotherapy. Phys Imaging Radiat Oncol 2018; 5: 37-43. ## [DOI:10.1016/j.phro.2018.02.002] [PMID] []
22. Nauta M, Villarreal‐Barajas JE, Tambasco M. Fractal analysis for assessing the level of modulation of IMRT fields. Medical Physics 2011; 38(10): 5385-93. ## [DOI:10.1118/1.3633912] [PMID]
23. Nauta M, Barajas EV, Tambasco M. Assessing the Level of Modulation of IMRT Fields. International Journal of Radiation Oncology, Biology, Physics 2010; 78(3): S759. ## [DOI:10.1016/j.ijrobp.2010.07.1757]
24. Sharon XQi, Allen X, Li K, Kainz K, Ben Brammer GH, Olivera KJ, Ruchala C, Schultz JF. Wilson. Ranking complex IMRT plans using an EUD-Based figure-of-merit index. International Journal of Radiation Oncology, Biology, Physics 2006; 66(3): S658. ## [DOI:10.1016/j.ijrobp.2006.07.1218]
25. Qi XS, Semenenko VA, Li XA. Improved critical structure sparing with biologically based IMRT optimization. Medical Physics 2009; 36(5): 1790-9. ## [DOI:10.1118/1.3116775] [PMID]
26. Wu Q, Mohan R, Niemierko A, Schmidt-Ullrich R. Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. International Journal of Radiation Oncology* Biology* Physics 2002; 52(1): 224-35. ## [DOI:10.1016/S0360-3016(01)02585-8] [PMID]
27. Niemierko A., Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Medical physics 1997; 24(1): 103-10. ## [DOI:10.1118/1.598063] [PMID]
28. Niemierko A. A generalized concept of equivalent uniform dose (EUD). Med Phys 1999; 26(6): 1100. ##
29. Mesbahi A, Rasouli N, Mohammadzadeh M. Comparison of radiobiological models for radiation therapy plans of prostate cancer: Three-dimensional conformal versus intensity modulated radiation therapy. Journal of Biomedical Physics & Engineering 2019; 9(3): 267. ## [DOI:10.31661/jbpe.v9i3Jun.655]
30. Haghbin A, Mostaar A, Paydar R, Bakhshandeh M, Nikoofar A, Houshyari M, Cheraghi S. Prediction of chronic kidney disease in abdominal cancers radiation therapy using the functional assays of normal tissue complication probability models. J Cancer Res Ther 2022; 18(3): 718-24. ## [DOI:10.4103/jcrt.jcrt_179_21] [PMID]
31. Cheraghi S, Nikoofar A, Bakhshandeh M, Khoei S, Farahani S, Abdollahi H, Mahdavi SR. Normal tissue complication probability modeling of radiation-induced sensorineural hearing loss after head-and-neck radiation therapy. Int J Radiat Biol 2017; 93(12): 1327-33. ## [DOI:10.1080/09553002.2017.1385872] [PMID]
32. Cheraghi S, Nikoofar A, Bakhshandeh M, Khoei S, Farahani S, Abdollahi H, Mahdavi SR. Normal tissue complication probability modeling of radiation-induced sensorineural hearing loss after head-and-neck radiation therapy. Int J Radiat Biol 2017; 93(12): 1327-33. ## [DOI:10.1080/09553002.2017.1385872] [PMID]
33. Farhood B, Bahreyni Toossi M, Soleymanifard S. Assessment of dose calculation accuracy of TiGRT treatment planning system for physical wedged fields in radiotherapy. Iranian Journal of Medical Physics 2016. 13(3): 146-53. ##
34. Keivan H, Shahbazi-Gahrouei D, Shanei A, Amouheidari A. Assessment of imprecise small photon beam modeling by two treatment planning system Algorithms. Journal of Medical Signals and Sensors 2018; 8(1): 39. ## [DOI:10.4103/jmss.JMSS_28_17]
35. Bahreyni Toossi MT, Soleymanifard S, Farhood B, Mohebbi S, Davenport D. Assessment of accuracy of out-of-field dose calculations by TiGRT treatment planning system in radiotherapy. J Cancer Res Ther 2018; 14(3): 634-9. ## [DOI:10.4103/0973-1482.176423] [PMID]
36. Xia P, Fu KK, Wong GW, Akazawa C, Verhey LJ. Comparison of treatment plans involving intensity-modulated radiotherapy for nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2000; 48(2): 329-37. ## [DOI:10.1016/S0360-3016(00)00585-X] [PMID]
37. Senthilkumar K, Maria Das KJ. Comparison of biological-based and dose volume-based intensity-modulated radiotherapy plans generated using the same treatment planning system. J Cancer Res Ther 2019; 15(Supplement): S33-S38. ## [DOI:10.4103/jcrt.JCRT_956_16] [PMID]
38. Bosse C, Narayanasamy G, Saenz D, Myers P, Kirby N, Rasmussen K, et al. Dose Calculation Comparisons between Three Modern Treatment Planning Systems. J Med Phys 2020; 45(3): 143-7. ## [DOI:10.4103/jmp.JMP_111_19] [PMID] []
39. Hasani M, Mohammadi K, Ghasemi S, Nabavi M. Evaluating accuracy of treatment planning system algorithms using monte carlo simulation in heterogeneousity of lung. Jundishapur Scientific Medical Journal 2016; 15(2): 241-51. ##
40. Nasrollah J, Mikaeil M, Omid E, Mojtaba SS, Ahad Z. Influence of the intravenous contrast media on treatment planning dose calculations of lower esophageal and rectal cancers. J Cancer Res Ther 2014; 10(1): 147-52. ## [DOI:10.4103/0973-1482.131465] [PMID]
41. Mahmoudi R, Jabbari N, Aghdasi M, Khalkhali HR. Energy dependence of measured CT numbers on substituted materials used for CT number calibration of radiotherapy treatment planning systems. PLoS One 2016; 11(7): e0158828. ## [DOI:10.1371/journal.pone.0158828] [PMID] []
42. van de Sande D, Sharabiani M, Bluemink H, Kneepkens E, Bakx N, Hagelaar E, et al. Artificial intelligence based treatment planning of radiotherapy for locally advanced breast cancer. Phys Imaging Radiat Oncol 2021; 20: 111-16. ## [DOI:10.1016/j.phro.2021.11.007] [PMID] []
43. Wang C, Zhu X, Hong JC, Zheng D. Artificial intelligence in radiotherapy treatment planning: present and future. Technology in Cancer Research & Treatment 2019; 18: 1533033819873922. ## [DOI:10.1177/1533033819873922] [PMID] []
44. De Kerf G, Claessens M, Raouassi F, Mercier C, Stas D, Ost P, et al. A geometry and dose-volume based performance monitoring of artificial intelligence models in radiotherapy treatment planning for prostate cancer. Phys Imaging Radiat Oncol 2023; 28: 100494. ## [DOI:10.1016/j.phro.2023.100494] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Cheraghi S, Azhang S, Hormozi-Moghaddam Z, Alipour Firoozabadi L. The Comparison of Two Treatment Planning Systems (Core PLAN and TiGRT) Using the Figure of Merit Equivalent Uniform Dose(fEUD) for Optimization of Radiotherapy Treatment. armaghanj 2024; 29 (2) :278-294
URL: http://armaghanj.yums.ac.ir/article-1-3529-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 29, Issue 2 (3-2024) Back to browse issues page
ارمغان دانش Armaghane Danesh
Persian site map - English site map - Created in 0.05 seconds with 39 queries by YEKTAWEB 4660