[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing & Abstracting::
Publication Ethics::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing & Abstracting
DOAJ
GOOGLE SCHOLAR
..
:: Volume 29, Issue 4 (7-2024) ::
__Armaghane Danesh__ 2024, 29(4): 610-627 Back to browse issues page
Molecular Docking of Thymus Vulgaris Biochemical Against Candida Albicans Secreted Aspartyl Protease 5 to Find Possible Inhibitory Compounds
M Zare1 , J Razmara2 , S Parvizpour3 , AM Barzegari 4
1- Master of Microbial Biotechnology, University of Maragheh, Maragheh, Iran
2- Department of Computer Science, University of Tabriz, Tabriz
3- Research Center for Pharmaceutical Nanotechnology, Biomedical Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
4- Department of Biology, University of Maragheh, Maragheh, Iran , Barzegaridoctora@gmail.com
Abstract:   (323 Views)
Background & aim: Despite being considered a common yeast among humans, Candida albicans can become an invasive agent under certain conditions and cause various types of acute or chronic infections. The use of existing antifungal drugs is limited due to their side effects and the resistance of this yeast to them. Previous in vitro studies have demonstrated that thyme plant possesses antifungal properties and its metabolites have the ability to kill the candida strains resistant to azole antifungal drugs. Secreted aspartyl protease 5 (SAP5) plays a crucial role in the pathogenicity of this yeast. Therefore, the aim of the present study was to determine and investigate the molecular docking of biological compounds of garden thyme (L. Thymus vulgaris) with secreted aspartyl protease-5 of Candida albicans yeast to find possible inhibitory compounds.

Methods: In the present molecular docking study conducted in 2024, the active phytochemical compounds of the Thymus vulgaris plant were obtained from the LOTUS and NPASS databases. The structure of the SAP5 protein was retrieved from the RCSB PDB database. Molecular docking of ligands with the SAP5 enzyme was performed using AutoDock Vina in the PyRx 0.8 software package to calculate binding energies and determine the docking position of each compound in its interaction with SAP5. The compounds with the best binding energy to the target protein were further evaluated for pharmacokinetic properties and toxicity, and the selected ligands were visualized using BIOVIA Discovery Studio. The collected data were analyzed using different software and compared with the results of previous articles in this field.

Results: The binding energies of Thymus vulgaris compounds to the active site of the SAP5 enzyme ranged from -9.9 to -3.4 kcal/mol. The highest binding affinities to the active site were observed for the compounds Eriodictin, (-)-Taxifolin, and Ellagic Acid. These compounds also demonstrated favorable pharmacokinetic and toxicity profiles. Pharmacokinetic studies of three selected compounds using the SwissADME online server showed their promising medicinal properties. Despite this, investigating their toxicity using ADMETlab and ProTox-II servers showed the toxicity of eriodictin.

Conclusion: The results of the present study indicated that some compounds in thyme plant may inhibit SAP5. Therefore, probably one of the mechanisms involved in the anti-candidal effects of garden thyme on Candida albicans yeast is through the inhibition of this protein.

 
Keywords: Thymus plant, Candida albicans, Pharmacokinetics, Molecular docking
Full-Text [PDF 1329 kb]   (160 Downloads)    
Type of Study: Research | Subject: Parasitology
Received: 2024/04/7 | Accepted: 2024/10/8 | Published: 2024/10/21
References
1. Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. Invasive candidiasis. Nature Reviews Disease Primers 2018; 4(1): 1-20.## [DOI:10.1038/nrdp.2018.26]
2. Schaller M, Januschke E, Schackert C, Woerle B, Korting HC. Different isoforms of secreted aspartyl proteinases(Sap) are expressed by Candida albicans during oral and cutaneous candidosis in vivo. Journal of Medical Microbiology 2001; 50(8): 743-7.## [DOI:10.1099/0022-1317-50-8-743]
3. A Braga-Silva L, LS Santos A. Aspartic protease inhibitors as potential anti-Candida albicans drugs: impacts on fungal biology, virulence and pathogenesis. Current Medicinal Chemistry 2011; 18(16): 2401-19.## [DOI:10.2174/092986711795843182]
4. Gnat S, Łagowski D, Nowakiewicz A, Dyląg M. A global view on fungal infections in humans and animals: opportunistic infections and microsporidioses. Journal of Applied Microbiology 2021; 131(5): 2095-113.## [DOI:10.1111/jam.15032]
5. Sardi J, Scorzoni L, Bernardi T, Fusco-Almeida A, Mendes Giannini MJS. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. Journal of Medical Microbiology 2013; 62(1): 10-24.## [DOI:10.1099/jmm.0.045054-0]
6. Moran G, Coleman D, Sullivan D. An introduction to the medically important Candida species. In: Calderone R.A., Clancy C.J. (Editors). Candida and Candidiasis. 2nd ed. ASM Press; 2011: 9-25.## [DOI:10.1128/9781555817176.ch2]
7. Staniszewska M. Virulence factors in Candida species. Current Protein and Peptide Science 2020; 21(3): 313-23.## [DOI:10.2174/1389203720666190722152415]
8. Clayton YM, Noble WC. Observations on the epidemiology of Candida albicans. J Clin Pathol 1966; 19(1): 76-8.## [DOI:10.1136/jcp.19.1.76]
9. Dadar M, Tiwari R, Karthik K, Chakraborty S, Shahali Y, Dhama K. Candida albicans - Biology, molecular characterization, pathogenicity, and advances in diagnosis and control - An update. Microb Pathog 2018; 117: 128-38.## [DOI:10.1016/j.micpath.2018.02.028]
10. Delaloye J, Calandra T. Invasive candidiasis as a cause of sepsis in the critically ill patient. Virulence 2014; 5(1): 161-9.## [DOI:10.4161/viru.26187]
11. Talapko J, Juzbašić M, Matijević T, Pustijanac E, Bekić S, Kotris I, et al. Candida albicans-The virulence factors and clinical manifestations of infection. J Fungi(Basel) 2021; 7(2):79.## [DOI:10.3390/jof7020079]
12. Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 2003; 67(3): 400-28.## [DOI:10.1128/MMBR.67.3.400-428.2003]
13. Wu H, Downs D, Ghosh K, Ghosh AK, Staib P, Monod M, Tang J. Candida albicans secreted aspartic proteases 4-6 induce apoptosis of epithelial cells by a novel Trojan horse mechanism. Faseb J 2013; 27(6): 2132-44.## [DOI:10.1096/fj.12-214353]
14. Chen YC, Wu CC, Chung WL, Lee FJS. Differential secretion of Sap4-6 proteins in Candida albicans during hyphae formation. Microbiology 2002; 148(11): 3743-54.## [DOI:10.1099/00221287-148-11-3743]
15. Stahl-Biskup E, Venskutonis RP. 27 - Thyme. In: Peter KV(editor). Handbook of Herbs and Spices (Second Edition): Woodhead Publishing; 2012; 499-525.## [DOI:10.1533/9780857095671.499]
16. Patil SM, Ramu R, Shirahatti PS, Shivamallu C, Amachawadi RG. A systematic review on ethnopharmacology, phytochemistry and pharmacological aspects of Thymus vulgaris Linn. Heliyon 2021; 7(5): e07054.## [DOI:10.1016/j.heliyon.2021.e07054]
17. Jafri H, Ahmad I. Thymus vulgaris essential oil and thymol inhibit biofilms and interact synergistically with antifungal drugs against drug resistant strains of Candida albicans and Candida tropicalis. Journal de Mycologie Médicale 2020; 30(1): 100911.## [DOI:10.1016/j.mycmed.2019.100911]
18. Akbari S. Antifungal activity of Thymus vulgaris L. and Origanum vulgare L. against fluconazol-resistant and susceptible Candida albicans isolates. Journal of Medicinal Plants 2007; 6(21): 53-62.##
19. Baj T, Biernasiuk A, Wróbel R, Malm A. Chemical composition and in vitro activity of Origanum vulgare L., Satureja hortensis L., Thymus serpyllum L. and Thymus vulgaris L. essential oils towards oral isolates of Candida albicans and Candida glabrata. Open Chemistry 2020; 18(1): 108-18.## [DOI:10.1515/chem-2020-0011]
20. Blanc AR, Sortino MA, Butassi E, Svetaz LA. Synergistic effects of Thymus vulgaris essential oil in combination with antifungal agents and inhibition of virulence factors of Candida albicans. Phytomedicine Plus 2023; 3(4): 100481.## [DOI:10.1016/j.phyplu.2023.100481]
21. Arendrup MC, Patterson TF. Multidrug-resistant candida: epidemiology, molecular mechanisms, and treatment. The Journal of Infectious Diseases 2017; 216(suppl_3): S445-S51.## [DOI:10.1093/infdis/jix131]
22. Ksiezopolska E, Gabaldón T. Evolutionary emergence of drug resistance in candida opportunistic pathogens. Genes(Basel) 2018; 9(9); 461.## [DOI:10.3390/genes9090461]
23. Lee Y, Puumala E, Robbins N, Cowen LE. Antifungal drug resistance: molecular mechanisms in Candida albicans and beyond. Chem Rev 2021; 121(6): 3390-411.## [DOI:10.1021/acs.chemrev.0c00199]
24. Costa-de-Oliveira S, Rodrigues AG. Candida albicans antifungal resistance and tolerance in bloodstream infections: the triad yeast-host-antifungal. Microorganisms 2020; 8(2): 154.## [DOI:10.3390/microorganisms8020154]
25. Rivera J, Loya A, Ceballos R. Use of herbal medicines and implications for conventional drug therapy medical sciences. Altern Integ Med 2013; 2(6): 1-6.## [DOI:10.4172/2327-5162.1000130]
26. Fang J, Liu C, Wang Q, Lin P, Cheng F. In silico polypharmacology of natural products. Brief Bioinform 2018; 19(6): 1153-71.##
27. Ahammad F, Tengku Abd Rashid TR, Mohamed M, Tanbin S, Ahmad Fuad FA. Contemporary strategies and current trends in designing antiviral drugs against dengue fever via targeting host-based approaches. Microorganisms 2019; 7(9): 296.## [DOI:10.3390/microorganisms7090296]
28. Dhanasekaran S, Pushparaj Selvadoss P, Sundar Manoharan S, Jeyabalan S, Devi Rajeswari V. Revealing anti-fungal potential of plant-derived bioactive therapeutics in targeting secreted aspartyl proteinase (SAP) of Candida albicans: a molecular dynamics approach. J Biomol Struct Dyn 2024; 42(2): 710-24.## [DOI:10.1080/07391102.2023.2196703]
29. Silva DR, Sardi JCO, Freires IA, Silva ACB, Rosalen PL. In silico approaches for screening molecular targets in Candida albicans: A proteomic insight into drug discovery and development. Eur J Pharmacol 2019; 842: 64-9.## [DOI:10.1016/j.ejphar.2018.10.016]
30. Borelli C, Ruge E, Lee JH, Schaller M, Vogelsang A, Monod M, et al. X-ray structures of Sap1 and Sap5: Structural comparison of the secreted aspartic proteinases from Candida albicans. Proteins: Structure, Function, and Bioinformatics 2008; 72(4): 1308-19.## [DOI:10.1002/prot.22021]
31. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. In: Hempel JE, Williams CH, Hong CC(editors). Chemical Biology: Methods and Protocols. New York, NY: Springer New York; 2015; 243-50.## [DOI:10.1007/978-1-4939-2269-7_19]
32. Bhagyashree L J, Sachin HR. Drug Designing in Discovery Studio. Asian J Research Chem 2021; 14(2): 135-138. ##
33. Corradi V, Mancini M, Santucci MA, Carlomagno T, Sanfelice D, Mori M, et al. Computational techniques are valuable tools for the discovery of protein-protein interaction inhibitors: the 14-3-3σ case. Bioorg Med Chem Lett 2011; 21(22): 6867-71.## [DOI:10.1016/j.bmcl.2011.09.011]
34. Sutter J, Li J, Maynard AJ, Goupil A, Luu T, Nadassy K. New features that improve the pharmacophore tools from Accelrys. Curr Comput Aided Drug Des 2011; 7(3): 173-80.## [DOI:10.2174/157340911796504305]
35. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7: 42717.## [DOI:10.1038/srep42717]
36. Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 2021; 49(W1): W5-w14.## [DOI:10.1093/nar/gkab255]
37. Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Research 2018; 46(W1): W257-W63.## [DOI:10.1093/nar/gky318]
38. Rutz A, Sorokina M, Galgonek J, Mietchen D, Willighagen E, Gaudry A, et al. The LOTUS initiative for open knowledge management in natural products research. ELife 2022; 11: e70780. [DOI:10.7554/eLife.70780]
39. Zhao H, Yang Y, Wang S, Yang X, Zhou K, Xu C, et al. NPASS database update 2023: quantitative natural product activity and species source database for biomedical research. Nucleic Acids Research 2022; 51(D1): D621-D8.## [DOI:10.1093/nar/gkac1069]
40. Reichel A, Lienau P. Pharmacokinetics in drug discovery: an exposure-centred approach to optimising and predicting drug efficacy and safety. Handb Exp Pharmacol 2016; 232: 235-60.## [DOI:10.1007/164_2015_26]
41. Agu PC, Afiukwa CA, Orji OU, Ezeh EM, Ofoke IH, Ogbu CO, et al. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Scientific Reports 2023; 13(1): 13398.## [DOI:10.1038/s41598-023-40160-2]
42. Pinzi L, Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int J Mol Sci 2019; 20(18): 4331.## [DOI:10.3390/ijms20184331]
43. Nejatbakhsh S, Ilkhanizadeh-Qomi M, Razzaghi-Abyaneh M, Jahanshiri Z. The effects of ellagic acid on growth and biofilm formation of Candida albicans. Journal of Medical Microbiology and Infectious Diseases 2020; 8(1): 14-8.## [DOI:10.29252/JoMMID.8.1.14]
44. Possamai Rossatto FC, Tharmalingam N, Escobar IE, d'Azevedo PA, Zimmer KR, Mylonakis E. Antifungal activity of the phenolic compounds ellagic acid (EA) and caffeic acid phenethyl ester(cape) against drug-resistant candida auris. J Fungi(Basel) 2021; 7(9): 763.## [DOI:10.3390/jof7090763]
45. Ivanov M, Kannan A, Stojković DS, Glamočlija J, Calhelha RC, Ferreira IC, et al. Flavones, flavonols, and glycosylated derivatives-Impact on Candida albicans growth and virulence, expression of cdr1 and erg11, cytotoxicity. Pharmaceuticals 2020; 14(1): 27.## [DOI:10.3390/ph14010027]
46. Meenambiga S, Venkataraghavan R, Biswal RA. In silico analysis of plant phytochemicals against secreted aspartic proteinase enzyme of Candida albicans. Journal of Applied Pharmaceutical Science 2018; 8(11): 140-50.## [DOI:10.7324/JAPS.2018.81120]
47. Flamandita D, Sahlan M, Lischer K, Pratami DK. Molecular docking analysis of anti-candida albicans biomarkers in sulawesi propolis against secreted aspartic proteinase-5: Proceeding of international conference on engineering technologies and applied sciences (ICETAS); 2019: IEEE. Kuala Lumpur, Malaysia.## [DOI:10.1109/ICETAS48360.2019.9117300]
48. Borelli C, Ruge E, Lee JH, Schaller M, Vogelsang A, Monod M, et al. X-ray structures of Sap1 and Sap5: structural comparison of the secreted aspartic proteinases from Candida albicans. Proteins 2008; 72(4): 1308-19.## [DOI:10.1002/prot.22021]
49. Alam F, Mohammadin K, Shafique Z, Amjad ST, Asad MHHb. Citrus flavonoids as potential therapeutic agents: A review. Phytotherapy Research 2022; 36(4): 1417-41.## [DOI:10.1002/ptr.7261]
50. Seleem D, Pardi V, Murata RM. Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro. Archives of Oral Biology 2017; 76: 76-83.## [DOI:10.1016/j.archoralbio.2016.08.030]
51. Fani M, Kohanteb J. In vitro antimicrobial activity of Thymus vulgaris essential oil against major oral pathogens. J Evid Based Complementary Altern Med 2017; 22(4): 660-6.## [DOI:10.1177/2156587217700772]
52. Naseri N, Kalantari Khandani A, Baherimoghadam T, Kalantari Khandani A, Hamedani S, Nouripour-Sisakht S, et al. The effect of Thymus vulgaris essential oil and chlorhexidine on Candida albicans accumulated on removable orthodontic appliance: a clinical trial. J Dent(Shiraz) 2022; 23(1 Suppl): 190-7.##
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zare M, Razmara J, Parvizpour S, Barzegari A. Molecular Docking of Thymus Vulgaris Biochemical Against Candida Albicans Secreted Aspartyl Protease 5 to Find Possible Inhibitory Compounds. armaghanj 2024; 29 (4) :610-627
URL: http://armaghanj.yums.ac.ir/article-1-3621-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 29, Issue 4 (7-2024) Back to browse issues page
ارمغان دانش Armaghane Danesh
Persian site map - English site map - Created in 0.09 seconds with 38 queries by YEKTAWEB 4660