[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing & Abstracting::
Publication Ethics::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing & Abstracting
DOAJ
GOOGLE SCHOLAR
..
:: Volume 29, Issue 5 (10-2024) ::
__Armaghane Danesh__ 2024, 29(5): 657-675 Back to browse issues page
The Effect of Combined Exercise and Curcumin Supplementation on TCF-1 and GSK3β Gene Expression in the Brains of Rats with Glioblastoma Multiforme
S Afshar Yousefi1 , Y Kazemzadeh2 , H Shirvani3 , S Mirzayan Shanjani1
1- Department of Exercise Physiology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
2- Department of Exercise Physiology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran , yaser.kazemzadeh@yahoo.com
3- Exercise Physiology Research Center, Lifestyle Research Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
Abstract:   (1200 Views)
Background & aim:  Lifestyle modification and the use of nanotechnology are considered therapeutic strategies for cancers. Therefore, the aim of the present study was to determine the effect of combined exercise and curcumin supplementation on the expression of T cell factor 1 (TCF-1) and glycogen synthase kinase 3 beta (GSK3β) genes in the brains of mice with glioblastoma multiforme.

Methods: In the present experimental study conducted in 2023 at the Islamic Azad University, 40 male Wistar rats were divided into 5 healthy control groups, glioblastoma multiforme (GBM), GBM+ combined training (CT), GBM+ nanocurcumin supplement (N-CUR) and GBM+CT+N-CUR (8 rats in each group). Glioblastoma was injected into the frontal cortex of rat. Exercise training was performed for 4 weeks and 3 days per week as a combination of aerobic and resistance training. Nano curcumin supplement was gavage with a dose of 80 mg/kg for 4 weeks, 5 days per week. At the end, rats sacrificed and TCF-1 and GSK3β genes of brain glioblastoma were analyzed by Real-time PCR method. The collected data were analyzed using Shapiro-Wilk, Levin, one-way analysis of variance, Tukey's post hoc test and Pearson correlation.

Results: The results of the present study indicated that the expression of TCF1 mRNA and GSK3β mRNA in the brain tumor tissue of rats showed a significant increase compared to the healthy control group (p<0.0001 for both). However, compared to the GBM group, all the treatment groups, especially the GBM+CT+N-CUR group, indicated a significant decrease in the expression of TCF1 mRNA and GSK3β mRNA in the brain tumor tissue (p<0.05). The correlation between these two factors was not confirmed in different research groups (p>0.05). Based on histological image, tumor induction caused tissue integrity destruction and the level of inflammatory factors and lymphocytes infiltration in this tissue also expanded. However, exercise training and nano curcumin supplementation led to control of tumor tissue damage and reduction of tumor tissue, and these changes were greater in combination therapy.

Conclusion: It seemed that the combination of exercise and Nano curcumin supplement could be an effective treatment method in down regulation of some effective genes in brain tumor tissue. Therefore, they can be used during the recovery period or cancer treatment with the doctor's order. However, in this field, more studies are needed, especially in human samples.

 
Keywords: Combined exercise, Brain tissue, Glioblastoma, Curcumin
Full-Text [PDF 1624 kb]   (154 Downloads)    
Type of Study: Research | Subject: Sport Physiology
Received: 2024/01/26 | Accepted: 2024/09/9 | Published: 2024/10/6
References
1. Mohammadi E, Aminorroaya A, Fattahi N, Azadnajafabad S, Rezaei N, Farzi Y, et al. Epidemiologic pattern of cancers in Iran; current knowledge and future perspective. Journal of Diabetes & Metabolic Disorders 2021; 20(1): 825-9.## [DOI:10.1007/s40200-020-00654-6] [PMID] []
2. Fuller JT, Hartland MC, Maloney LT, Davison K. Therapeutic effects of aerobic and resistance exercises for cancer survivors: a systematic review of meta-analyses of clinical trials. British Journal of Sports Medicine 2018; 52(20): 1311.## [DOI:10.1136/bjsports-2017-098285] [PMID]
3. Liu R, Page M, Solheim K, Fox S, Chang SM. Quality of life in adults with brain tumors: current knowledge and future directions. Neuro-oncology 2009; 11(3): 330-9.## [DOI:10.1215/15228517-2008-093] [PMID] []
4. Panel E. American college of sports medicine roundtable on exercise guidelines for cancer survivors. J ACSM 2010; 42: 1409-26.## [DOI:10.1249/MSS.0b013e3181e0c112] [PMID]
5. Capozzi LC, Boldt KR, Easaw J, Bultz B, Culos-Reed SN. Evaluating a 12-week exercise program for brain cancer patients. Psychooncology 2016; 25(3): 354-8.## [DOI:10.1002/pon.3842] [PMID]
6. Suhett LG, de Miranda Monteiro Santos R, Silveira BKS, Leal ACG, de Brito ADM, de Novaes JF, et al. Effects of curcumin supplementation on sport and physical exercise: a systematic review. Critical Reviews in Food Science and Nutrition 2021; 61(6): 946-58.## [DOI:10.1080/10408398.2020.1749025] [PMID]
7. Bhat A, Mahalakshmi AM, Ray B, Tuladhar S, Hediyal TA, Manthiannem E, et al. Benefits of curcumin in brain disorders. BioFactors 2019; 45(5): 666-89.## [DOI:10.1002/biof.1533] [PMID]
8. Osali A. Aerobic exercise and nano-curcumin supplementation improve inflammation in elderly females with metabolic syndrome. Diabetology & Metabolic Syndrome 2020; 12: 1-7.## [DOI:10.1186/s13098-020-00532-4] [PMID] []
9. Cheragh-Birjandi S, Moghbeli M, Haghighi F, Safdari MR, Baghernezhad M, Akhavan A, et al. Impact of resistance exercises and nano-curcumin on synovial levels of collagenase and nitric oxide in women with knee osteoarthritis. Translational Medicine Communications 2020; 5: 1-6.## [DOI:10.1186/s41231-020-00055-0]
10. Ababd ZVM, Chaman NH, Hosseini M, Maleki A. Aerobic Exercise and Nano-curcumin Supplementation Prevent cancer symptom development through MAPK/ERK pathway. Research square, 2023.## [DOI:10.21203/rs.3.rs-3257588/v1]
11. Del Prado-Audelo ML, Caballero-Florán IH, Meza-Toledo JA, Mendoza-Muñoz N, González-Torres M, Florán B, et al. Formulations of curcumin nanoparticles for brain diseases. Biomolecules 2019; 9(2): 56.## [DOI:10.3390/biom9020056] [PMID] []
12. van de Wetering M, Oosterwegel M, Dooijes D, Clevers H. Identification and cloning of TCF‐1, a T lymphocyte‐specific transcription factor containing a sequence‐specific HMG box. The EMBO Journal 1991; 10(1): 123-32.## [DOI:10.1002/j.1460-2075.1991.tb07928.x] [PMID] []
13. Weber BN, Chi AWS, Chavez A, Yashiro Ohtani Y, Yang Q, Shestova O, et al. A critical role for TCF-1 in T-lineage specification and differentiation. Nature 2011; 476(7358): 63-8.## [DOI:10.1038/nature10279] [PMID] []
14. Raghu D, Xue H-H, Mielke LA. Control of lymphocyte fate, infection, and tumor immunity by TCF-1. Trends in Immunology 2019; 40(12): 1149-62.## [DOI:10.1016/j.it.2019.10.006] [PMID]
15. Pećina-Šlaus N, Kafka A, Tomas D, Marković L, Okštajner PK, Sukser V, et al. Wnt signaling transcription factors TCF-1 and LEF-1 are upregulated in malignant astrocytic brain tumors. Histology and Histopathology 2014; 29(12): 1557-64.##
16. Jaafari S, Abbaszadeh H, Farzanegi P, Zameni L. Investigating the effect of swimming exercise and vitamin D consumption on B-catenin/TCF signaling pathway in endometriosis model rats. Journal of Physiologh of Movement & Health 2023; 3(1): 127-36.##
17. Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer's disease model via canonical Wnt/β-catenin pathway. ACS Nano 2014; 8(1): 76-103.## [DOI:10.1021/nn405077y] [PMID]
18. Mills CN, Nowsheen S, Bonner JA, Yang ES. Emerging roles of glycogen synthase kinase 3 in the treatment of brain tumors. Frontiers in Molecular Neuroscience 2011; 4: 47.## [DOI:10.3389/fnmol.2011.00047] [PMID] []
19. Peng Y, Chi R, Liu G, Tian W, Zhang J, Zhang R. Aerobic Exercise regulates apoptosis through the pi3k/akt/gsk-3β signaling pathway to improve cognitive impairment in alzheimer's disease mice. Neural Plasticity 2022;10(1): 1-12.## [DOI:10.1155/2022/1500710] [PMID] []
20. Zang J, Liu Y, Li W, Xiao D, Zhang Y, Luo Y, et al. Voluntary exercise increases adult hippocampal neurogenesis by increasing GSK-3β activity in mice. Neuroscience 2017; 354: 122-35.## [DOI:10.1016/j.neuroscience.2017.04.024] [PMID]
21. Sarawi WS, Alhusaini AM, Fadda LM, Alomar HA, Albaker AB, Aljrboa AS, et al. Curcumin and nano-curcumin mitigate copper neurotoxicity by modulating oxidative stress, inflammation, and akt/gsk-3β signaling. Molecules 2021; 26(18): 5591.## [DOI:10.3390/molecules26185591] [PMID] []
22. Swanson LW. Brain maps: structure of the rat brain: Gulf Professional Publishing; 2004. ##
23. Al Jarrah M, Matalka I, Al Aseri H, Mohtaseb A, Smirnova IV, Novikova L, et al. Exercise training prevents endometrial hyperplasia and biomarkers for endometrial cancer in rat model of type 1 diabetes. Journal of Clinical Medicine Research 2010; 2(5): 207.## [DOI:10.4021/jocmr444e]
24. Shamsi MM, Mahdavi M, Quinn L, Gharakhanlou R, Isanegad A. Effect of resistance exercise training on expression of Hsp70 and inflammatory cytokines in skeletal muscle and adipose tissue of STZ-induced diabetic rats. Cell Stress and Chaperones 2016; 21(5): 783-91.## [DOI:10.1007/s12192-016-0703-7] [PMID] []
25. Vijayakurup V, Thulasidasan AT, Shankar GM, Retnakumari AP, Nandan CD, Somaraj J, et al. Chitosan encapsulation enhances the bioavailability and tissue retention of curcumin and improves its efficacy in preventing B [a] P-induced lung carcinogenesis. Cancer Prevention Research 2019; 12(4): 225-36.## [DOI:10.1158/1940-6207.CAPR-18-0437] [PMID]
26. Kafka A, Bačić M, Tomas D, Žarković K, Bukovac A, Njirić N, et al. Different behaviour of DVL 1, DVL 2, DVL 3 in astrocytoma malignancy grades and their association to TCF 1 and LEF 1 upregulation. Journal of Cellular and Molecular Medicine 2019; 23(1): 641-55.## [DOI:10.1111/jcmm.13969] [PMID] []
27. Mazumdar J, Dondeti V, Simon MC. Hypoxia‐inducible factors in stem cells and cancer. Journal of Cellular and Molecular Medicine 2009; 13(11‐12): 4319-28.## [DOI:10.1111/j.1582-4934.2009.00963.x] [PMID] []
28. Mazumdar J, O'brien WT, Johnson RS, LaManna JC, Chavez JC, Klein PS, et al. O2 regulates stem cells through Wnt/β-catenin signalling. Nature Cell Biology 2010; 12(10): 1007-13.## [DOI:10.1038/ncb2102] [PMID] []
29. Rampazzo E, Persano L, Pistollato F, Moro E, Frasson C, Porazzi P, et al. Wnt activation promotes neuronal differentiation of glioblastoma. Cell Death & Disease 2013; 4(2): e500.## [DOI:10.1038/cddis.2013.32] [PMID] []
30. Lee Y, Lee J-K, Ahn SH, Lee J, Nam D-H. WNT signaling in glioblastoma and therapeutic opportunities. Laboratory Investigation 2016; 96(2): 137-50.## [DOI:10.1038/labinvest.2015.140] [PMID]
31. Polakis P. Wnt signaling and cancer. Genes & Development 2000; 14(15): 1837-51.## [DOI:10.1101/gad.14.15.1837]
32. Hajra KM, Fearon ER. Cadherin and catenin alterations in human cancer. Genes, Chromosomes and Cancer 2002; 34(3): 255-68.## [DOI:10.1002/gcc.10083] [PMID]
33. Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metabolism 2018; 27(1): 10-21.## [DOI:10.1016/j.cmet.2017.09.015] [PMID]
34. Koelwyn GJ, Quail DF, Zhang X, White RM, Jones LW. Exercise-dependent regulation of the tumour microenvironment. Nature Reviews Cancer 2017; 17(10): 620-32.## [DOI:10.1038/nrc.2017.78] [PMID]
35. Li Q, Hua Y, Yang Y, He X, Zhu W, Wang J, et al. T cell factor 7 (TCF7)/TCF1 feedback controls osteocalcin signaling in brown adipocytes independent of the wnt/β-catenin pathway. Molecular and Cellular Biology 2018; 25(1): 1-10.## [DOI:10.1128/MCB.00562-17] [PMID] []
36. Woods JA, Wilund KR, Martin SA, Kistler BM. Exercise, inflammation and aging. Aging and Disease 2012; 3(1): 130.##
37. Zhang J, Lyu T, Cao Y, Feng H. Role of TCF‐1 in differentiation, exhaustion, and memory of CD8+ T cells: A review. The FASEB Journal 2021; 35(5): e21549.## [DOI:10.1096/fj.202002566R]
38. Lee DS, Lee MK, Kim JH. Curcumin induces cell cycle arrest and apoptosis in human osteosarcoma (HOS) cells. Anticancer Research 2009; 29(12): 5039-44.##
39. Sa G, Das T. Anti cancer effects of curcumin: cycle of life and death. Cell Division 2008; 3: 1-14.## [DOI:10.1186/1747-1028-3-14] [PMID] []
40. Miyashita K, Kawakami K, Nakada M, Mai W, Shakoori A, Fujisawa H, et al. Potential therapeutic effect of glycogen synthase kinase 3β inhibition against human glioblastoma. Clinical Cancer Research 2009; 15(3): 887-97.## [DOI:10.1158/1078-0432.CCR-08-0760] [PMID]
41. Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase‐3 from rabbit skeletal muscle: Separation from cyclic‐AMP‐dependent protein kinase and phosphorylase kinase. European Journal of Biochemistry 1980; 107(2): 519-27.## [DOI:10.1111/j.1432-1033.1980.tb06059.x] [PMID]
42. Lee J, Kim MS. The role of GSK3 in glucose homeostasis and the development of insulin resistance. Diabetes Research and Clinical Practice 2007; 77(3): S49-57.## [DOI:10.1016/j.diabres.2007.01.033] [PMID]
43. Rousset M, Chevalier G, Rousset JP, Dussaulx E, Zweibaum A. Presence and cell growth-related variations of glycogen in human colorectal adenocarcinoma cell lines in culture. Cancer Research 1979; 39(2_Part_1): 531-4.##
44. Demarchi F, Bertoli C, Sandy P, Schneider C. Glycogen synthase kinase-3β regulates NF-κB1/p105 stability. Journal of Biological Chemistry 2003; 278(41): 39583-90.## [DOI:10.1074/jbc.M305676200] [PMID]
45. Gregory MA, Qi Y, Hann SR. Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. Journal of Biological Chemistry 2003; 278(51): 51606-12.## [DOI:10.1074/jbc.M310722200] [PMID]
46. Sharma AK, Kumar A, Sahu M, Sharma G, Datusalia AK, Rajput SK. Exercise preconditioning and low dose copper nanoparticles exhibits cardioprotection through targeting GSK-3β phosphorylation in ischemia/reperfusion induced myocardial infarction. Microvascular Research 2018; 120: 59-66.## [DOI:10.1016/j.mvr.2018.06.003] [PMID]
47. Xiao Cl, Zhong ZP, Lü C, Guo BJ, Chen JJ, Zhao T, et al. Physical exercise suppresses hepatocellular carcinoma progression by alleviating hypoxia and attenuating cancer stemness through the Akt/GSK-3β/β-catenin pathway. Journal of Integrative Medicine 2023; 21(2): 184-93.## [DOI:10.1016/j.joim.2023.01.002] [PMID]
48. Huang Q, Wu M, Wu X, Zhang Y, Xia Y. Muscle-to-tumor crosstalk: The effect of exercise-induced myokine on cancer progression. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 2022: 188761.## [DOI:10.1016/j.bbcan.2022.188761] [PMID]
49. McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Cocco L, Ratti S, et al. Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseases. Advances in Biological Regulation 2017; 65: 77-88.## [DOI:10.1016/j.jbior.2017.05.005] [PMID]
50. Beltagy DM, Nawar NF, Mohamed TM, Tousson E, El-Keey MM. The synergistic effect of nanocurcumin and donepezil on Alzheimer's via PI3K/AKT/GSK-3β pathway modulating. Prostaglandins & Other Lipid Mediators 2024; 170: 106791.## [DOI:10.1016/j.prostaglandins.2023.106791] [PMID]
51. Wang W, Li M, Wang L, Chen L, Goh BC. Curcumin in cancer therapy: Exploring molecular mechanisms and overcoming clinical challenges. Cancer Letters 2023; 570(1): 1-10.## [DOI:10.1016/j.canlet.2023.216332] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Afshar Yousefi S, Kazemzadeh Y, Shirvani H, Mirzayan Shanjani S. The Effect of Combined Exercise and Curcumin Supplementation on TCF-1 and GSK3β Gene Expression in the Brains of Rats with Glioblastoma Multiforme. armaghanj 2024; 29 (5) :657-675
URL: http://armaghanj.yums.ac.ir/article-1-3598-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 29, Issue 5 (10-2024) Back to browse issues page
ارمغان دانش Armaghane Danesh
Persian site map - English site map - Created in 0.14 seconds with 39 queries by YEKTAWEB 4710