1. Kestioslu K, Yonar T, Azbar N. Feasibility of physico-chemical treatment and advanced oxidation processes [AOPs] as a means of pretreatment of olive mill effluent. J Process Bio-chemistry 2005; 40: 2409-16.## [ DOI:10.1016/j.procbio.2004.09.015] 2. Sarkar S, Sondhi K, Das R, Chakraborty S, Choi H, Bhattacharjee C. Development of a mathematical model to predict different parameters during pharmaceutical wastewater treatment using TiO2 coated membrane. Ecotoxicol Environ Saf 2015; 121: 193-8. ## [ DOI:10.1016/j.ecoenv.2015.03.041] [ PMID] 3. Kümmerer K, Significance of antibiotics in the environment. J Antimicrob Chemother 2003; 52(1): 5-7. ## 4. Seidmohammadi A, Asgari G,Torabi l. Removal of metronidazole using ozone activated persulfate from aqua solutions in presence of ultrasound. J Mazandaran Univ Med Sci 2016; 26(143): 160-73. ## 5. Kulik N, Trapido M, Goi A, Veressinita Y, Munter R. Combined chemical treatment of pharmaceutical effluents from medical ointment production. Chemosphere 2008; 70(8): 1525-31. ## [ DOI:10.1016/j.chemosphere.2007.08.026] [ PMID] 6. Rahmani A, Shabanlo A, Majidi S, Tarlani Azar M, Mehralipour J. Efficiency of ciprofloxacin removal by ozonation process with calcium peroxide from aqueous solutions. J Qazvin Univ Med Sci 2015; 19(2): 55-64. ## 7. Emad S, Elmolla ES, Chaudhuri M. Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution. Desalination 2010; 256: 43-7. ## [ DOI:10.1016/j.desal.2010.02.019] 8. Samarghandi M. Optimization of electrocoagulation via response surface methodology to remove ciprofloxacin from aqueous media. J Water Wastewater 2017; 28(108): 19-21. ## 9. Safari G, Hosseini M, Kamali H, Moradirad R, Mahvi A. Photocatalytic degradation of tetracycline antibiotic from aqueous solutions using UV/TiO2 and UV/H2O2/TiO2. J Health 2014; 5(3): 203-13. ## 10. Dehghani S, Joneydi A, Farzadkia M, Gholami M. Investigation of the efficiency of fenton's advanced oxidation process in sulfadiazine antibiotic removal from aqueous solutions. J Arak Uni Med Sci 2012; 15(7): 19-29. ## 11. Rahmani AR, Shabanlo A, Majidi S, Tarlani Azar M, Mehralipour J. Efficiency of ciprofloxacin (CIP) removal from pharmaceutical effluents using the ozone/persulfate (O3/PS) process. J Water Wastewater 2016; 27(1): 40-8. ## 12. Kakavand B, Kalantary R, Joneidi JA, Seraph A, Gholizadeh A, Azari A. Efficiency of powder activated carbon magnetized by Fe3O4 nanoparticles for amoxicillin removal from aqueous solutions: equilibrium and kinetic studies of adsorption process. Iran J Health & Environ 2014; 7(1): 21-34. ## 13. Hoseini M, Safari GH, Kamani H, Jaafari J, Mahvi A. Survey on removal of tetracycline antibiotic from aqueous solutions by nano-sonochemical process and evaluation of the influencing parameters. Iran J Health & Environ 2015; 8(2): 141-52. ## 14. Nezamzadeh-Ejhieh A, Shirzadi A. Enhancement of the photocatalytic activity of ferrous oxide by doping onto the nano-clinoptilolite particles towards photodegradation of tetracycline. Chemosphere 2014; 107: 136-44. ## [ DOI:10.1016/j.chemosphere.2014.02.015] [ PMID] 15. Hai L, Weifeng L, Jian Z, Chenglu Z, Liang R, Ye L. Removal of cephalexin from aqueous solutions by original and Cu(II)/Fe(III) impregnated activated carbons developed from lotus stalks kinetics and equilibrium studies. J Hazard Mater 2011; 185(2-3): 1528-35. ## [ DOI:10.1016/j.jhazmat.2010.10.081] [ PMID] 16. Zheng W, Chen K, Zhu J, Ji L. A novel process for erythromycin separation from fermentation broth by resin adsorption-aqueous crystallization. Sep Purif Technol 2013; 116: 398-404. ## [ DOI:10.1016/j.seppur.2013.06.019] 17. Hassani A, Torabian A, Rahimi K. Performance of iron-zero (nZVI) nanno particles in removal of cephalexin from synthetic wastewater. J Water Wastewater 2014; 25: 85-92. ## 18. Fang Z, Chen J, Qiu X, Qiu X, Cheng W, Zhu L. Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination 2011; 268(1-3): 60-7. ## [ DOI:10.1016/j.desal.2010.09.051] 19. Nasseh N, Barikbin B, Taghavi L, Nasseri MA. Antibiotics pollution damaging effects on environment and review of efficiency of differen methods for removing them. J Nurse Phys Within War 2016; 4(10 and 11): 50-62. ## 20. Homem V, Santos L. Degradation and removal methods of antibiotics from aqueous matrices-a review. J Environ Manage 2011; 92(10): 2304-47. ## [ DOI:10.1016/j.jenvman.2011.05.023] [ PMID] 21. Suty H, De Traversay C, Cost M. Applications of advanced oxidation processes: present and future. Water Sci Technol 2004; 49(4): 227-33. ## [ DOI:10.2166/wst.2004.0270] 22. Wang H, Zhang G, Gao Y. Photocatalytic degradation of metronidazole in aqueous solution by niobate K6Nb10.8O30. Wuhan Univ J Nat Sci 2010; 15(4): 345-9. ## [ DOI:10.1007/s11859-010-0664-0] 23. Zazouli MA, Ulbricht M, Nasseri S, Susanto H. Effect of hydrophilic and hydrophobic organic matter on amoxicillin and cephalexin residuals rejection from water by nanofiltration. Iran J Environ Health Sci Eng 2010; 7(1): 15-24. ## 24. Rivera-Utrilla J, Gómez-Pacheco CV, Sánchez-Polo M, López-Peñalver JJ, Ocampo-Pérez R. Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents. J Environ Manage 2013; 131: 16-24. ## [ DOI:10.1016/j.jenvman.2013.09.024] [ PMID] 25. Sadat S, Salimi L, Ghafourian H, Yadegarian Hadji Abadi L, Taghi Sadatipour S. Optimization and modeling of tetracycline antibiotic removal using TiO2/N/S nanocatalyst in the presence of visible light in aqueous solutions. Armaghane-danesh 2022; 27(2): 241-56. ## [ DOI:10.52547/armaghanj.27.2.241] 26. Raygan Shirazi Nejad A, Jorfi S, Tabatabaei T, Amiri F. Photocatalytic degradation of gentamicin antibiotics using Fe3O4 / SiO2 / TiO2 nanocomposites synthesized in aqueous solutions in the presence of sunlight. Armaghane-danesh 2022; 27(3): 349-64. ## [ DOI:10.52547/armaghanj.27.3.349] 27. Edwine T, Khalil H, Evens E. Experimental and modeling studies of sorption of tetracycline onto iron oxides-coated quartz. Colloids Surfaces A 2008; 327(1-3): 57-63. ## [ DOI:10.1016/j.colsurfa.2008.06.013] 28. Kermani M, Bahrami-Asl F, Esrafili A, Farzadkia M, Salahshour-Arian S. Identification of oxidation intermediates and investigation of toxicity changes in heterogenic catalytic ozonation process in the presence of MgO nanoparticles for metronidazole removal from aqueous solution. HSR 2016; 12(2): 140-5. ## 29. Kamani H, Bazrafshan E, Ashrafi SD, Sancholi F. Efficiency of sono-nano-catalytic process of TiO2 nano-particle in removal of erythromycin and metronidazole from aqueous solution. J Mazandaran Univ Med Sci 2017; 27(151): 140-54. ## 30. Esrafili A, Khosravi S, Gholami M, Farzadkia M, Abdorahimi G. Photocatalytic removal of metronidazole using magnetic TiO2 nanocatalyst (Fe3O4@SiO2@TiO2): synthesis, characterization, and operational parameters. J Mazandaran Univ Med Sci 2018; 28(159): 97-115. ## 31. Görmez F, Görmez Ö, Gözmen B, Kalderis D. Degradation of chloramphenicol and metronidazole by electro-fenton process using graphene oxide-Fe3O4 as heterogeneous catalyst. J Environ Chem Eng 2019; 7(2): 102990. ## [ DOI:10.1016/j.jece.2019.102990] 32. Wang X, Wang A, Lu M, Ma J. Synthesis of magnetically recoverable Fe0/graphene-TiO2 nanowires composite for both reduction and photocatalytic oxidation of metronidazole. Chem Eng J 2018; 337: 372-84. ## [ DOI:10.1016/j.cej.2017.12.090] 33. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc 1958; 80: 1339. [ DOI:10.1021/ja01539a017] 34. Lu N, He G, Liu J, Liu G, Li J. Combustion synthesis of graphene for water treatment. Ceramics International 2017; 44(2): 2463-9. ## [ DOI:10.1016/j.ceramint.2017.10.222]
|