[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing & Abstracting::
Publication Ethics::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing & Abstracting
DOAJ
GOOGLE SCHOLAR
..
:: Volume 28, Issue 6 (12-2023) ::
__Armaghane Danesh__ 2023, 28(6): 815-837 Back to browse issues page
Molecular Dynamics Simulation of the Interaction of Saccharin with Human p53 Protein
M Shahlaei1 , M Mansourian 2
1- Department of Medicinal Chemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran,
2- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran , mahboubehmansourian90@gmail.com
Abstract:   (713 Views)
Background & aim: The role of artificial sweeteners in the occurrence of cancer risk has been widely discussed during the last few decades. Therefore, the aim of the present study was to determine the dynamic and molecular simulation of the interaction of saccharin(SA) with human p53 protein.

Methods: The present bioinformatics study was conducted in 2023. The interaction of SA and sodium saccharin (SSA) with the human p53 gene promoter (Pp53g) has already been published in 2019 in two theoretical and experimental sections. But in the present study, the binding ability and the binding site of SA ligand as a synthetic sweetener with human p53 protein (receptor) as a tumor suppressor was theoretically performed. The amino acid residues involved in the interaction, energy free binding and binding constant were determined. Molecular docking was used for molecular interaction calculations. More detailed information about the binding method of the ligand-receptor complex was obtained by molecular dynamics (MD) simulation. The structure and topology file for the human p53 protein extracted from the protein database was created based on the AMBER 99 force field with the GROMACS 5.3.1 program. Acpype/Antechamber program with General AMBER Force Field (GAFF) was used to create structure file and ligand topology in MD simulation. This force field was compatible with the AMBER 99 force field. The simulation time in explicit solvent was 50 ns for SA-p53 protein complex. The collected data were analyzed using different software and compared with the results of related articles.

Results: The results of molecular docking indicated that the SA compound was bound to human p53 protein with a binding energy of -4.55 kcal/mol and a binding constant of 462.18 μM. A hydrogen bond was formed between SA and amino acid Leu137. The conformational changes resulting from MD simulation for the ligand-protein complex showed that SA can bind to Arg196 and His179 as key amino acids of p53 protein in the DNA binding region through two hydrogen bonds. SA can also be placed in the adjacent of amino acids Leu137, Ala138, His179, Asp184 and Met237 through hydrophobic bonds. The values of the plots of root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg) for free p53 protein and in the presence of SA ligand show the stable binding of SA to p53 protein.

Conclusion: The present study could provide valuable information about the binding mechanism of SA to human p53 protein as a macromolecule at the molecular level with subatomic details. The results can be useful in determining the potential carcinogenic risk of this sweetener due to its high consumption and the design and synthesis of newer and safer artificial sweeteners.

 
Keywords: Saccharin, Human p53 protein, Molecular docking, Molecular dynamics simulation, Cancer
Full-Text [PDF 925 kb]   (106 Downloads)    
Type of Study: Research | Subject: Special
Received: 2023/09/11 | Accepted: 2023/11/16 | Published: 2023/12/9
References
1. Fahlberg C, Remsen I. Ueber die oxydation des orthotoluolsulfamids. European Journal of Inorganic Chemistry 1879; 12(1): 469-73.## [DOI:10.1002/cber.187901201135]
2. Whitehouse CR, Boullata J, McCauley LA. The potential toxicity of artificial sweeteners. Aaohn Journal 2008; 56(6): 251-61. ## [DOI:10.1177/216507990805600604] [PMID]
3. Whysner J, Williams GM. Saccharin mechanistic data and risk assessment: urine composition, enhanced cell proliferation, and tumor promotion. Pharmacology & Therapeutics 1996; 71(1-2): 225-52. ## [DOI:10.1016/0163-7258(96)00069-1] [PMID]
4. Howe G, Burch J, Miller A, Morrison B, Gordon P, Weldon L, et al. Artificial sweeteners and human bladder cancer. The Lancet 1977; 310(8038): 578-81. ## [DOI:10.1016/S0140-6736(77)91428-3] [PMID]
5. Weihrauch M, Diehl V. Artificial sweeteners-do they bear a carcinogenic risk? Annals of Oncology 2004; 15(10): 1460-5. ## [DOI:10.1093/annonc/mdh256] [PMID]
6. No DCR. Saccharin and its salts. Lyon, France: IARC; 1987. ##
7. Findikli Z, Turkoglu S. Determination of the effects of some artificial sweeteners on human peripheral lymphocytes using the comet assay. Journal of Toxicology and Environmental Health Sciences 2014; 6(8): 147-53. ## [DOI:10.5897/JTEHS2014.0313]
8. Saad A, Khan FA, Hayee A, Nazir MS. A review on potential toxicity of artificial sweetners vs safety of stevia: A natural biosweetner. Journal of Biology, Agriculture and Healthcare 2014; 4(15): 1-12. ##
9. Bosetti C, Gallus S, Talamini R, Montella M, Franceschi S, Negri E, et al. Artificial sweeteners and the risk of gastric, pancreatic, and endometrial cancers in Italy. Cancer Epidemiology and Prevention Biomarkers 2009; 18(8): 2235-8. ## [DOI:10.1158/1055-9965.EPI-09-0365] [PMID]
10. Ibrahim O. High intensity sweeteners chemicals structure, properties and applications. Natural Science and Discovery 2015; 1(4): 88-94. ## [DOI:10.20863/nsd.97334]
11. Health Canada. Health Canada 2007 Questions and answers Saccharin Accessed 25, ـJuly 2023, from https://wwwcanadaca/en/health-canada/services/food-nutrition/food-safety/food-additives/sugar-substitutes/questions-answers-saccharin-artificial-sweetenershtml2007. ##
12. Hanahan D, Weinberg RA. The hallmarks of cancer. cell 2000; 100(1): 57-70. ## [DOI:10.1016/S0092-8674(00)81683-9] [PMID]
13. Sonnenschein C, Soto AM. Theories of carcinogenesis: an emerging perspective. Seminars in Cancer Biology 2008; 18(5): 372-7. ## [DOI:10.1016/j.semcancer.2008.03.012] [PMID] []
14. Suzuki K, Matsubara H. Recent advances in p53 research and cancer treatment. BioMed Research International 2011; 2011: 7. ## [DOI:10.1155/2011/978312] [PMID] []
15. Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 1994; 265(5170): 346-55. ## [DOI:10.1126/science.8023157] [PMID]
16. Petitjean A, Achatz M, Borresen-Dale A, Hainaut P, Olivier M. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 2007; 26(15): 2157-65. ## [DOI:10.1038/sj.onc.1210302] [PMID]
17. Smith ML, Seo YR. p53 regulation of DNA excision repair pathways. Mutagenesis 2002; 17(2): 149-56. ## [DOI:10.1093/mutage/17.2.149] [PMID]
18. Rahimipour M, Talebi AR, Anvari M, Sarcheshmeh AA, Omidi M. Saccharin consumption increases sperm DNA fragmentation and apoptosis in mice. Iranian Journal of Reproductive Medicine 2014; 12(5): 307-12. ##
19. Andreatta M, Munoz S, Lantieri M, Eynard A, Navarro A. Artificial sweetener consumption and urinary tract tumors in Cordoba, Argentina. Preventive Medicine 2008; 47(1): 136-9. ## [DOI:10.1016/j.ypmed.2008.03.015] [PMID]
20. Gupta M, Sharma R, Kumar A. Docking techniques in pharmacology: How Much Promising? Computational biology and chemistry 2018; 76: 210-7. ## [DOI:10.1016/j.compbiolchem.2018.06.005] [PMID]
21. Leach AR. Molecular modelling: principles and applications: Pearson education. London, England: Pearson Education; 2001 . ##
22. Taheri S, Nazifi M, Mansourian M, Hosseinzadeh L, Shokoohinia Y. Ugi efficient synthesis, biological evaluation and molecular docking of coumarin-quinoline hybrids as apoptotic agents through mitochondria-related pathways. Bioorganic Chemistry 2019; 91: 103147. ## [DOI:10.1016/j.bioorg.2019.103147] [PMID]
23. Mansourian M, Mahnam K, Rajabi HR, Roushani M, Doustimotlagh AH. Exploring the binding mechanism of saccharin and sodium saccharin to promoter of human p53 gene by theoretical and experimental methods. Journal of Biomolecular Structure and Dynamics 2020; 38(2): 548-64. ## [DOI:10.1080/07391102.2019.1582438] [PMID]
24. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry 2009; 30(16): 2785-91. ## [DOI:10.1002/jcc.21256] [PMID] []
25. Goodsell DS, Morris GM, Olson AJ. Automated docking of flexible ligands: applications of AutoDock. Journal of Molecular Recognition 1996; 9(1): 1-5. ## https://doi.org/10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6 [DOI:10.1002/(SICI)1099-1352(199601)9:13.0.CO;2-6]
26. Hess B, Kutzner C, Van Der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical theory and Computation 2008; 4(3): 435-47. ## [DOI:10.1021/ct700301q] [PMID]
27. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. Journal of Computational Chemistry 2004; 25(9): 1157-74. ## [DOI:10.1002/jcc.20035] [PMID]
28. Shi T, Polderman PE, Pagès-Gallego M, Van Es RM, Vos HR, Burgering BM, et al. p53 Forms redox-dependent protein-protein interactions through cysteine 277. Antioxidants 2021; 10(10): 1578. ## [DOI:10.3390/antiox10101578] [PMID] []
29. Buzek J, Latonen L, Kurki S, Peltonen K, Laiho M. Redox state of tumor suppressor p53 regulates its sequence-specific DNA binding in DNA-damaged cells by cysteine 277. Nucleic Acids Research 2002; 30(11): 2340-8. ## [DOI:10.1093/nar/30.11.2340] [PMID] []
30. Scotcher J, Clarke DJ, Weidt SK, Mackay CL, Hupp TR, Sadler PJ, et al. Identification of two reactive cysteine residues in the tumor suppressor protein p53 using top-down FTICR mass spectrometry. Journal of the American Society for Mass Spectrometry 2011; 22(5): 888-97. ## [DOI:10.1007/s13361-011-0088-x] [PMID]
31. Shi T, Dansen TB. Reactive oxygen species induced p53 activation: DNA damage, redox signaling, or both? Antioxidants & Redox Signaling 2020; 33(12): 839-59. ## [DOI:10.1089/ars.2020.8074] [PMID]
32. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 1998; 19(14): 1639-62. ## https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B [DOI:10.1002/(SICI)1096-987X(19981115)19:143.0.CO;2-B]
33. Yadava U, Yadav SK, Yadav RK. Electronic structure, vibrational assignments and simulation studies with A/T rich DNA duplex of an aromatic bis-amidine derivative. DNA Repair 2017; 60: 9-17. ## [DOI:10.1016/j.dnarep.2017.10.005] [PMID]
34. Darden T, York D, Pedersen L. Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics 1993; 98(12): 10089-92. ## [DOI:10.1063/1.464397]
35. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics 1983; 79(2): 926-35. ## [DOI:10.1063/1.445869]
36. Berendsen HJ, Postma Jv, van Gunsteren WF, DiNola A, Haak J. Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics 1984; 81(8): 3684-90. ## [DOI:10.1063/1.448118]
37. Hess B, Bekker H, Berendsen HJ, Fraaije JG. LINCS: a linear constraint solver for molecular simulations. Journal of Computational Chemistry 1997; 18(12):1463-72. ## https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.3.CO;2-L [DOI:10.1002/(SICI)1096-987X(199709)18:123.3.CO;2-L]
38. Yadava U, Shukla BK, Roychoudhury M. Pyrazolo [3, 4-d] pyrimidines as the inhibitors of mycobacterial β-oxidation trifunctional enzyme. Medicinal Chemistry Research 2015; 24(12): 4002-15. ## [DOI:10.1007/s00044-015-1441-6]
39. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. Journal of molecular Graphics 1996;14(1):33-8. ## [DOI:10.1016/0263-7855(96)00018-5] [PMID]
40. Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, Design and Selection 1995; 8(2): 127-34. ## [DOI:10.1093/protein/8.2.127] [PMID]
41. Zhang G, Wang L, Zhou X, Li Y, Gong D. Binding characteristics of sodium saccharin with calf thymus DNA in vitro. Journal of Agricultural and Food Chemis 2014;62(4): 991-1000. ## [DOI:10.1021/jf405085g] [PMID]
42. Joerger AC, Fersht AR. The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annual Review of Biochemistry 2016; 85: 375-404. ## [DOI:10.1146/annurev-biochem-060815-014710] [PMID]
43. Caponio VCA, Troiano G, Adipietro I, Zhurakivska K, Arena C, Mangieri D, et al. Computational analysis of TP53 mutational landscape unveils key prognostic signatures and distinct pathobiological pathways in head and neck squamous cell cancer. British Journal of Cancer 2020; 123(8): 1302-14. ## [DOI:10.1038/s41416-020-0984-6] [PMID] []
44. Criddle MP. Computational investigation of the DNA binding domain of p53: a drive towards novel therapeutics: University of Southampton; 2017. ##
45. Icsel C, Yilmaz VT. In vitro DNA binding studies of the sweetening agent saccharin and its copper (II) and zinc (II) complexes. Journal of Photochemistry and Photobiology B: Biology 2014; 130: 115-21. ## [DOI:10.1016/j.jphotobiol.2013.11.001] [PMID]
46. Wang Y, Xu ZL, Xie YY, Tian YX, Shen YD, Young GM, et al. Development of polyclonal antibody-based indirect competitive enzyme-linked immunosorbent assay for sodium saccharin residue in food samples. Food Chemistry 2011; 126(2): 815-20. ## [DOI:10.1016/j.foodchem.2010.11.076]
47. Van Eyk AD. The effect of five artificial sweeteners on Caco-2, HT-29 and HEK-293 cells. Drug and Chemical Toxicology 2015; 38(3): 318-27. ## [DOI:10.3109/01480545.2014.966381] [PMID]
48. Wolff S, Rodin B. Saccharin-induced sister chromatid exchanges in Chinese hamster and human cells. Science 1978; 200(4341): 543-5. ## [DOI:10.1126/science.644315] [PMID]
49. Suzuki H, Suzuki N. Detection of K-ras codon 12 mutation by polymerase chain reaction and differential dot-blot hybridization in sodium saccharin-treated human RSa cell. Biochemical and Biophysical Research Communications 1993;196(2): 956-61. ## [DOI:10.1006/bbrc.1993.2342] [PMID]
50. Yang J, Duerksen-Hughes P. A new approach to identifying genotoxic carcinogens: p53 induction as an indicator of genotoxic damage. Carcinogenesis 1998; 19(6): 1117-25. ## [DOI:10.1093/carcin/19.6.1117] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shahlaei M, Mansourian M. Molecular Dynamics Simulation of the Interaction of Saccharin with Human p53 Protein. armaghanj 2023; 28 (6) :815-837
URL: http://armaghanj.yums.ac.ir/article-1-3517-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 28, Issue 6 (12-2023) Back to browse issues page
ارمغان دانش Armaghane Danesh
Persian site map - English site map - Created in 0.05 seconds with 39 queries by YEKTAWEB 4657