[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
بانک ها و نمایه نامه ها::
فرم پیش نیاز ارسال مقاله::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
بانک ها و نمایه ها
DOAJ
GOOGLE SCHOLAR
..
:: دوره 28، شماره 5 - ( 6-1402 ) ::
جلد 28 شماره 5 صفحات 654-638 برگشت به فهرست نسخه ها
اثر تمرین تناوبی و امگاـ3 بر بیوژنز میتوکندری بافت کبدی موش‌های کبد چرب غیرالکلی
مصطفی کاظمی1 ، احمد عبدی 2، جواد مهربانی3 ، علیرضا براری1
1- گروه فیزیولوژی ورزشی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران
2- گروه فیزیولوژی ورزشی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران ، a.abdi58@gmail.com
3- گروه فیزیولوژی ورزشی، دانشگاه گیلان، رشت، ایران
چکیده:   (757 مشاهده)
زمینه و هدف: بیماری کبد چرب غیرالکلی(NAFLD) یکی از علل اصلی بیماری مزمن کبدی در سراسر جهان است. نشان داده شده که اختلال در عملکرد میتوکندری ارتباط نزدیکی با NAFLD دارد. لذا هدف از این پژوهش تعیین و بررسی اثر تمرین تناوبی و امگا 3 بر بیوژنز میتوکندری بافت کبدی موش‌های کبد چرب غیرالکلی بود.

روش بررسی: در این مطالعه تجربی که در سال 1401 در دانشگاه آزاد آمل انجام شد، 40 سر موش صحرایی نر نژاد ویستار با میانگین وزنی 82/7 ± 98/156 گرم در پنج گروه کنترل ـ سالم(CNبیمار(NAFLD)، بیمارـ تمرین(TRNAF)، بیمارـ مکمل(SUPNAF) و بیمارـ تمرین‌ـ مکمل(TRSUPNAF) قرار گرفتند. گروه‌های مکمل، طی دوره مداخله روزانه 1 ‌گرم امگاـ3(به ازای هر کیلوگرم وزن بدن) را به صورت خوراکی دریافت کردند. برنامه تمرین تناوبی شامل دویدن روی تردمیل با سرعت 28ـ14 متر در دقیقه، پنج روز هفته به مدت هشت هفته اجرا شد. میزان بیان گیرنده فعال‌کننده تکثیر پروکسی ‌زوم گاما هم‌فعال‌سازـ1 آلفا، فاکتورهای تنفسی هسته‌ای ـ1، فاکتور رونویسی A میتوکندری و سیرتوئین‌ـ3 به روش ریل تایم پی‌سی‌آر اندازه­گیری شد. داده­های جمع‌آوری شده با استفاده از آزمون‌های آماری آنالیز واریانس یک­طرفه و تعقیبی توکی تجزیه و تحلیل شدند.

یافته‌ها: القای کبد چرب غیر الکلی باعث کاهش بیان گیرنده فعال‌کننده تکثیر پروکسی‌زوم گاما هم‌فعال‌سازـ1 آلفا، فاکتورهای تنفسی هسته‌ای‌ـ1، فاکتور رونویسی A میتوکندری و سیرتوئین ـ3 شد (0001/0=p). بیان گیرنده فعال‌کننده تکثیر پروکسی‌زوم گاما هم‌فعال‌سازـ1 آلفا، فاکتورهای تنفسی هسته‌ای-1، فاکتور رونویسی A میتوکندری و سیرتوئین ـ3 در گروه‌های بیمارـ تمرین (به ترتیب؛ 041/0=p، 048/0=p، 043/0=p و 035/0=pبیمارـ مکمل (به ترتیب؛ 044/0=p، 042/0=p، 037/0=p و 033/0=p) و             بیمارـ تمرین‌ـ مکمل (به ترتیب؛ 0001/0=p، 0001/0=p، 0001/0=p و 0001/0=p) نسبت به بیمار و هم‌چنین بیمارـ تمرین‌ـ مکمل نسبت به گروه‌ بیمارـ تمرین (به ترتیب؛ 041/0=p، 040/0=p، 039/0=p و 043/0=p) و بیمارـ مکمل (به ترتیب؛ 038/0=p، 046/0=p، 046/0=p و 045/0=p) افزایش معنی‌داری داشت.

نتیجه‌گیری: داده‌های حاضر نشان داد که تمرین ورزشی و هم‌چنین امگاـ3 در شرایط NAFLD قادر به تعدیل بیوژنز میتوکندری از طریق افزایش در ژن‌های مؤثر در این مسیر است. هم‌چنین ترکیب فعالیت ورزشی تناوبی و مکمل‌سازی امگاـ3 دارای اثرات هم‌افزایی بوده است.

 
واژه‌های کلیدی: فعالیت ورزشی، امگاـ3، بیوژنز میتوکندری و کبد چرب غیر الکلی
متن کامل [PDF 574 kb]   (101 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: فیزیولوژی ورزش
دریافت: 1401/12/1 | پذیرش: 1402/5/14 | انتشار: 1402/6/18
فهرست منابع
1. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nature Medicine 2018; 24(7): 908-22.## [DOI:10.1038/s41591-018-0104-9] [PMID] []
2. Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 2018; 67(1): 123-33. ## [DOI:10.1002/hep.29466] [PMID] []
3. Lim S, Kim JW, Targher G. Links between metabolic syndrome and metabolic dysfunction-associated fatty liver disease. Trends in Endocrinology & Metabolism 2021; 32(7): 500-14. ## [DOI:10.1016/j.tem.2021.04.008] [PMID]
4. Hood DA, Memme JM, Oliveira AN, Triolo M. Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annual Review of Physiology 2019; 81: 19-41. ## [DOI:10.1146/annurev-physiol-020518-114310] [PMID]
5. Rahman FA, Quadrilatero J. Mitochondrial network remodeling: an important feature of myogenesis and skeletal muscle regeneration. Cellular and Molecular Life Sciences 2021; 78(10): 4653-75. ## [DOI:10.1007/s00018-021-03807-9] [PMID]
6. Torrens-Mas M, Hernández-López R, Pons DG, Roca P, Oliver J, Sastre-Serra J. Sirtuin 3 silencing impairs mitochondrial biogenesis and metabolism in colon cancer cells. American Journal of Physiology-Cell Physiology 2019; 317(2): C398-C404. ## [DOI:10.1152/ajpcell.00112.2019] [PMID]
7. Jing E, Emanuelli B, Hirschey MD, Boucher J, Lee KY, Lombard D, et al. Sirtuin-3(Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proceedings of the National Academy of Sciences 2011; 108(35): 14608-13. ## [DOI:10.1073/pnas.1111308108] [PMID] []
8. Ostman C, Smart N, Morcos D, Duller A, Ridley W, Jewiss D. The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: a systematic review and meta-analysis. Cardiovascular Diabetology 2017; 16(1): 1-11. ## [DOI:10.1186/s12933-017-0590-y] [PMID] []
9. Kim Y, Triolo M, Hood DA. Impact of aging and exercise on mitochondrial quality control in skeletal muscle. Oxidative Medicine and Cellular Longevity 2017; 2017: 3165396. ## [DOI:10.1155/2017/3165396] [PMID] []
10. Taskin S, Celik H, Demiryurek S, Turedi S, Taskin A. Effects of different-intensity exercise and creatine supplementation on mitochondrial biogenesis and redox status in mice. Iranian Journal of Basic Medical Sciences 2022; 25(8): 1009-15. ##
11. Khajvand Abedini A, Abdi A, Barari A, Torabi Palat Kaleh G, Kazemi M, Mirshafaei MA. The effect of moderate intensity interval training on mitochondrial biogenesis markers of rats fed a high fat diet. Physical Activity and Health 2022; 1(2): 25-37. ## [DOI:10.61186/jspac.38796.2.5.1]
12. Gomes F, Chuffa L, Scarano W, Pinheiro P, Fávaro W, Domeniconi RF. Nandrolone decanoate and resistance exercise training favor the occurrence of lesions and activate the inflammatory response in the ventral prostate. Andrology 2016; 4(3): 473-80. ## [DOI:10.1111/andr.12162] [PMID]
13. Lanza IR, Blachnio-Zabielska A, Johnson ML, Schimke JM, Jakaitis DR, Lebrasseur NK, et al. Influence of fish oil on skeletal muscle mitochondrial energetics and lipid metabolites during high-fat diet. American Journal of Physiology-Endocrinology and Metabolism 2013; 304(12): E1391-E403. ## [DOI:10.1152/ajpendo.00584.2012] [PMID] []
14. Shen HH, Peterson SJ, Bellner L, Choudhary A, Levy L, Gancz L, et al. Cold-pressed nigella sativa oil standardized to 3% thymoquinone potentiates omega-3 protection against obesity-induced oxidative stress, inflammation, and markers of insulin resistance accompanied with conversion of white to beige fat in mice. Antioxidants 2020; 9(6): 489. ## [DOI:10.3390/antiox9060489] [PMID] []
15. Di Cristofano M, Ferramosca A, Di Giacomo M, Fusco C, Boscaino F, Luongo D, et al. Mechanisms underlying the hormetic effect of conjugated linoleic acid: Focus on Nrf2, mitochondria and NADPH oxidases. Free Radical Biology and Medicine 2021; 167: 276-86. ## [DOI:10.1016/j.freeradbiomed.2021.03.015] [PMID]
16. Rossignoli CP, Dechandt CR, Souza AO, Sampaio IH, Vicentini TM, Teodoro BG, et al. Effects of intermittent dietary supplementation with conjugated linoleic acid and fish oil (EPA/DHA) on body metabolism and mitochondrial energetics in mice. The Journal of Nutritional Biochemistry 2018; 60: 16-23. ## [DOI:10.1016/j.jnutbio.2018.07.001] [PMID]
17. Delroz H, Abdi A, Barari A, Farzanegi P. Protective Effect of aerobic training along with resveratrol on mitochondrial dynamics of cardiac myocytes in animal model of non-alcoholic fatty liver disease. Journal of Ardabil University of Medical Sciences 2019; 19(3): 272-83. ## [DOI:10.29252/jarums.19.3.272]
18. Efati M, Khorrami M, Zarei Mahmmodabadi A, Raouf Sarshoori J. Induction of an Animal model of non-alcoholic fatty liver disease using a formulated high-fat diet. Journal of Babol University of Medical Sciences 2016; 18(11): 57-62. ##
19. Freitas DA, Rocha-Vieira E, Soares BA, Nonato LF, Fonseca SR, Martins JB, et al. High intensity interval training modulates hippocampal oxidative stress, BDNF and inflammatory mediators in rats. Physiology & Behavior 2018; 184: 6-11. ## [DOI:10.1016/j.physbeh.2017.10.027] [PMID]
20. de Andrade AM, Fernandes MdC, de Fraga LS, Porawski M, Giovenardi M, Guedes RP. Omega-3 fatty acids revert high-fat diet-induced neuroinflammation but not recognition memory impairment in rats. Metabolic Brain Disease 2017; 32(6): 1871-81. ## [DOI:10.1007/s11011-017-0080-7] [PMID]
21. Zhang YN, Guo YQ, Fan YN, Tao XJ, Gao QH, Yang JJ. Lycium barbarum polysaccharides promotes mitochondrial biogenesis and energy balance in a NAFLD cell model. Chinese Journal of Integrative Medicine 2022; 28(11): 975-82. ## [DOI:10.1007/s11655-021-3309-6] [PMID]
22. Sahin K, Orhan C, Akdemir F, Tuzcu M, Sahin N, Yılmaz I, et al. β-Cryptoxanthin ameliorates metabolic risk factors by regulating NF-κB and Nrf2 pathways in insulin resistance induced by high-fat diet in rodents. Food and Chemical Toxicology 2017; 107: 270-9. ## [DOI:10.1016/j.fct.2017.07.008] [PMID]
23. Koliaki C, Szendroedi J, Kaul K, Jelenik T, Nowotny P, Jankowiak F, et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metabolism 2015; 21(5): 739-46. ## [DOI:10.1016/j.cmet.2015.04.004] [PMID]
24. Pohjoismäki JL, Wanrooij S, Hyvärinen AK, Goffart S, Holt IJ, Spelbrink JN, et al. Alterations to the expression level of mitochondrial transcription factor A, TFAM, modify the mode of mitochondrial DNA replication in cultured human cells. Nucleic Acids Research 2006; 34(20): 5815-28. ## [DOI:10.1093/nar/gkl703] [PMID] []
25. Finley LW, Carracedo A, Lee J, Souza A, Egia A, Zhang J, et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell 2011; 19(3): 416-28. ## [DOI:10.1016/j.ccr.2011.02.014] [PMID] []
26. McDonnell E, Peterson BS, Bomze HM, Hirschey MD. SIRT3 regulates progression and development of diseases of aging. Trends in Endocrinology & Metabolism 2015; 26(9): 486-92. ## [DOI:10.1016/j.tem.2015.06.001] [PMID] []
27. Li R, Xin T, Li D, Wang C, Zhu H, Zhou H. Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease: the role of the ERK-CREB pathway and Bnip3-mediated mitophagy. Redox Biology 2018; 18: 229-43. ## [DOI:10.1016/j.redox.2018.07.011] [PMID] []
28. Zhang J, Song X, Cao W, Lu J, Wang X, Wang G, et al. Autophagy and mitochondrial dysfunction in adjuvant-arthritis rats treatment with resveratrol. Scientific Reports 2016; 6(1): 1-10. [DOI:10.9734/JSRR/2016/11862]
29. Safdar A, Little JP, Stokl AJ, Hettinga BP, Akhtar M, Tarnopolsky MA. Exercise increases mitochondrial PGC-1 α content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. The Journal of Biological Chemistry 2018; 293(13): 4953. ## [DOI:10.1074/jbc.EC118.002682] [PMID] []
30. Haase TN, Ringholm S, Leick L, Biensø RS, Kiilerich K, Johansen S, et al. Role of PGC-1α in exercise and fasting-induced adaptations in mouse liver. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2011; 301(5): R1501-R9. ## [DOI:10.1152/ajpregu.00775.2010] [PMID]
31. Aharoni-Simon M, Hann-Obercyger M, Pen S, Madar Z, Tirosh O. Fatty liver is associated with impaired activity of PPARγ-coactivator 1α (PGC1α) and mitochondrial biogenesis in mice. Laboratory Investigation 2011; 91(7): 1018-28. ## [DOI:10.1038/labinvest.2011.55] [PMID]
32. Bassel-Duby R, Olson EN. Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 2006; 75: 19-37. ## [DOI:10.1146/annurev.biochem.75.103004.142622] [PMID]
33. Finck BN, Gropler MC, Chen Z, Leone TC, Croce MA, Harris TE, et al. Lipin 1 is an inducible amplifier of the hepatic PGC-1α/PPARα regulatory pathway. Cell Metabolism 2006; 4(3): 199-210. [DOI:10.1016/j.cmet.2006.08.005] [PMID]
34. Zhou X, Chen M, Zeng X, Yang J, Deng H, Yi L, et al. Resveratrol regulates mitochondrial reactive oxygen species homeostasis through Sirt3 signaling pathway in human vascular endothelial cells. Cell Death & Disease 2014; 5(12): e1576-e. ## [DOI:10.1038/cddis.2014.530] [PMID] []
35. Ghiarone T, Andrade-Souza VA, Learsi SK, Tomazini F, Ataide-Silva T, Sansonio A, et al. Twice-a-day training improves mitochondrial efficiency, but not mitochondrial biogenesis, compared with once-daily training. Journal of Applied Physiology 2019; 127(3): 713-25. ## [DOI:10.1152/japplphysiol.00060.2019] [PMID]
36. Pellegrin M, Bouzourène K, Aubert JF, Bielmann C, Gruetter R, Rosenblatt-Velin N, et al. Impact of aerobic exercise type on blood flow, muscle energy metabolism, and mitochondrial biogenesis in experimental lower extremity artery disease. Scientific Reports 2020; 10(1): 1-14. ## [DOI:10.1038/s41598-020-70961-8] [PMID] []
37. Raffaele M, Bellner L, Singh SP, Favero G, Rezzani R, Rodella LF, et al. Epoxyeicosatrienoic intervention improves NAFLD in leptin receptor deficient mice by an increase in HO-1-PGC1α mitochondrial signaling. Experimental Cell Research 2019; 380(2): 180-7. ## [DOI:10.1016/j.yexcr.2019.04.029] [PMID]
38. Kusunoki C, Yang L, Yoshizaki T, Nakagawa F, Ishikado A, Kondo M, et al. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications 2013; 430(1): 225-30. ## [DOI:10.1016/j.bbrc.2012.10.115] [PMID]
39. Yang J, Sáinz N, Félix-Soriano E, Gil-Iturbe E, Castilla-Madrigal R, Fernández-Galilea M, et al. Effects of long-term DHA supplementation and physical exercise on non-alcoholic fatty liver development in obese aged female mice. Nutrients 2021; 13(2): 501. ## [DOI:10.3390/nu13020501] [PMID] []
40. Miotto PM, Horbatuk M, Proudfoot R, Matravadia S, Bakovic M, Chabowski A, et al. α-Linolenic acid supplementation and exercise training reveal independent and additive responses on hepatic lipid accumulation in obese rats. American Journal of Physiology-Endocrinology and Metabolism 2017; 312(6): E461-E70. ## [DOI:10.1152/ajpendo.00438.2016] [PMID] []
41. Masoodsinaki H, Nazarali P, Hanachi P. Evaluation and impact of omega-3 supplementation with a period of selective aerobic exercise on liver enzymes (AST-ALT) of active student girls. Hormozgan Medical Journal 2014; 18(3): 247-56. ##
42. Yahyazadeh M, Mirnasuri R. The effect of 8-week aerobic moderate intensity exercise and Omega-3 supplementation on Total antioxidant capacity and hydrogen peroxide in young un trained men. CMJA 2015; 5(3): 1283-9. ##
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kazemi M, Abdi A, Mehrabani J, Barari A. The Effect of Interval Training and Omega-3 on Mitochondrial Biogenesis in the Liver Tissue of Nonalcoholic Fatty Liver Disease (NAFLD)Rats. armaghanj 2023; 28 (5) :638-654
URL: http://armaghanj.yums.ac.ir/article-1-3444-fa.html

کاظمی مصطفی، عبدی احمد، مهربانی جواد، براری علیرضا. اثر تمرین تناوبی و امگاـ3 بر بیوژنز میتوکندری بافت کبدی موش‌های کبد چرب غیرالکلی. ارمغان دانش. 1402; 28 (5) :638-654

URL: http://armaghanj.yums.ac.ir/article-1-3444-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 28، شماره 5 - ( 6-1402 ) برگشت به فهرست نسخه ها
ارمغان دانش Armaghane Danesh
Persian site map - English site map - Created in 0.05 seconds with 39 queries by YEKTAWEB 4652