ارزيابي روش Touchdown Nested PCR جلوگيری از اتصالات غير اختصاصيا و افزايش اختصاصيت در تكثير زنی ويروس هاي نقش ايمني انسان و هپاتيت جي

بچيده:

بچيده: مهدداد روانشاد.

برگروز، عذرگاه کارکرده.

رضا قربانی.

محبوبه حاجی‌عبدالبخشی.

کارشناس ارشد ویروس‌شناسی پزشکی، دانشگاه تربیت مدرس تهران. دانشکده علوم پزشکی. کمیته تحقیقات دانشجویی. گروه ویروس‌شناسی پزشکی دکترای ویروس‌شناسی پزشکی، استاد دانشگاه تربیت مدرس تهران. دانشکده علوم پزشکی. گروه ویروس‌شناسی پزشکی مخصوص بیماری‌های عفونی استاد دانشگاه علوم پزشکی تهران، بیمارستان امام خمینی(ره). گروه بیماری‌های عفونی روانشاد@modares.ac.ir

Touchdown Nested PCR

دانشگاه تربیت مدرس تهران

پستالکترونیک: Ravanshad@modares.ac.ir

تاريخ وصول: 1388/9/6

تاريخ پذيرش: 1388/11/12

منولب مسئول مهرداد روانشاد

Downloaded from armaghanj.yums.ac.ir at 11:45 +0330 on Saturday October 5th 2019

Touchdown Nested PCR، اتصالات غيراختصاصی، افزایش اختصاصیت، تکثیر زنی.
مقدمه
واکنش زنجیره‌ای پلیمرаз (1) رایج‌ترین تکنیک مورد استفاده در آزمایش‌های مولکولی است که برای تکثیر یک توالی انتخابی به‌کار می‌رود (1).

2- عفونت‌های بیماری‌زا از قبل ویروس عامل سندروم انتصابی انسانی (2) نسبت به طبیعی و سیستمی انتقال ویروس با روش‌های مورد استفاده رایج در آزمایش‌گاه است (3 و 4).

3- تشخیص ویروس‌های با‌زنوم RNA نیازمند رویه‌های بسیار حساس و با ترتیب تشخیص بالا است که این امر به دلیل دور عفونت و بسیاری از ویروس‌ها و در نتیجه نیازمند به روش‌های بیمارستانی با قدرت تشخیص عادی‌کننده است. در این مقاله رویه‌های بیمارستانی است (5 و 6). استفاده بی‌طرفی به این سطح از حساسیت، امروزه به عنوان یک چالش اساسی برای روش‌های مولکولی و مخصوصاً برای تکثیر DNA ویروس‌های RNA در مطرح می‌باشد. چرا که این ویروس‌ها نیازمند به مرحله اضافی روندیسی مکسوس در پروسه تشخیص مستند، تکثیر از طریق واکنش زنجیره‌ای پلیمراز آشیانه‌ای (7) تا حدی منجر به بهبود حساسیت تشخیص شده است (7 و 6).

روش‌های جدید بر اساس واکنش زنجیره‌ای پلیمراز توسه‌ی بافت‌شناسی (8) و واکنش زنجیره‌ای پلیمراز Taqman 13
نمودهای جمعیت سرود بررسی در این مطالعه بیماران آلوده به ویروس هپاتیت جی و نقص ائمه انسان بودند. اجرای این تحقیق به تصحیح کمیته ایمنی زیستی و اخلاق پزشکی دانشگاه تربیت مدرس رسید. همچنین فرم ضایعاتنامه برای گلی بیماران شرکت کننده در تحقیق تهیه و تکمیل شد. تعداد 35 نمونه خون از هر کدام از فراد آلوده به ویروس نقص ائمه انسان و ویروس هپاتیت جی به ترتیب از مرکز تحقیقات ویروس نقص ائمه انسان بیمارستان امام خمینی و مرکز تحقیقات گوارش و کبد بیمارستان شریعتی تهران تهیه شدند. مثبت بودن نمونه‌ها برای ویروس نقص ائمه انسان و هپاتیت جی قبل به ترتیب با روش‌های وسترن بلات و واکنش زنجبیری پلی‌مرز تایید شده بود. حدود 10 سی‌سی خون محیطی از بیماران کشف شده و در لوله‌های استریل حاوی ماده ضدافکادی EDTA ریخته شد. کلیه نمونه‌ها بعد از تهیه شدن در فریزر 80 درجه سانتی‌گراد تگه‌داری شدند. 

ویرایس از 140 میکروولتر پلاسما با RNA استفاده از کیت استخراج RNA کیلز (آمریکا) طبیعی است. حالت سازشانه استخراج و پس از آن کنترل کیفی انجام شد.

به منظور ارزیابی کامل روش مورد نظر از یک سری پرایر معمولی برای ناحیه UTR ویرایش هپاتیت جی و از یک سری پرایر شاهدروبان (1) مربوط به زن واکنش زنجبیری پلی‌مرز به کار مورد بود (17، 18).

 الحرارت اتصال بالا می‌باشد که در سیگنال‌های بعید درجه حرارت اتصال در هر سیگنال یک درجه کاهش پیدا می‌کند. به طوری که در 10 سیگل آخر درجه حرارت اتصال ثابت می‌ماند. این کاهش متوالی درجه حرارت اتصال سبب می‌شود که بهترین درجه حرارت پرایمر - هدف انتخاب شود. در این‌ج hend نمونه واکنش زنجبیری‌های پلی‌مرز در دمای بالا اتصال پرایمر به الگو و در تریپ محصولات تولید شده، کاملاً اختصاصی و دقیق است، سپس همان‌طور که درجه حرارت کاهش می‌یابد پرایمرها به سکات‌های غیراختصاصی باند می‌شوند و محصولات غیراختصاصی به وجود می‌آیند. و کو این محصولات نسبت به محصولات اختصاصی بسیار کم می‌باشد و مثبت‌شناسی تأثیر چندانی در کیفیت محصول نهایی ایجاد نکند. روش اغلب برای ساده کردن مراحل تعیین درجه حرارت اتصال در واکنش زنجبیری‌های پلی‌مرز به کار مورد بود (17، 18).

مطالعه حاضر با منظور انرژی کارایی روش برای جلوگیری از اتصالات غیر اختصاصی و افزایش اختصاصیت در تکثیر زنی طراحی و انجام شد.

مواد و روش‌ها

این یک مطالعه تجربی است که طی سال‌های 1387 - 1388 در دانشگاه تربیت مدرس انجام شد.

1-Hepatitis G Virus (GBV-C)
2-Human Immunodeficiency Virus (HIV)
3-Degenerate
پوشش۱ و بررسی نقص ایمنی انسان‌برای واکنش
زنجبیرهای پی‌مرز آشپزی‌ای استفاده شد. پرایمرها بر
اساس اصول استاندارد طراحی پرایمر و با استفاده از
نرم افزارهای الگوآنالیز۱ و ذهن رانتر۱
جهت آنالیز ویژگی‌های ساختاری و ترمودینامیکی
طرحی شدند. پرایمرهای طراحی شده با استفاده از
نرم‌افزار بلاست۵ مورد آنالیز قرار گرفتند.

توالی استند تولیدی پرایمرهای مورد
استفاده به شرح زیر می‌باشد: پرایمرهای مورد
استفاده برای HIV به صورت خارجی پیش‌رو:
۵'-CCA ATT CCY ATA CAT TAY TGT GCC-3' خارجی
5'-TGT TRA ATG GCA GTC TAG CAG-3'
داخلی پیش‌رو: ۵'-RAT GGG AGG GGC ATA YAT TG-3'
ور داخلی پیش‌رو: ۵'-RAT GGG AGG
GCC ATA YAT TG-3' و داخلی پیش‌رو: ۵'-RAT GGG AGG

پرایمرهای مورد استفاده برای HGV به صورت:
۵'-GGTCGAATCCGCGTCACC-3' خارجی پیش‌رو
5'-CCGCTGGTCCTGTCAACT-3' خارجی پیش‌رو: ۵'-
7'-TAGCCACTATAGGTGTTCT-3' و
داخلی پیش‌رو: ۵'-TTGGAGCAGCTGGACC-3'
بورنده.

برای ساخت DNA ابتدا قسمتی از RNA برای ساخت
و سپس این کوئی از پرایمرها شناسایی و هیپرید شد و
برای بکریکس مکسوس، پرایمر مورد نظر
را شناسایی و با استفاده از بافر، dNTP و رشته الگو،

شرایط به طول سازی و ساخت رشته نمود.
برای انجام پرورش ۵ میکرولیتر مورد
نظر با استفاده از آنزیم M-MLV
ساخت شرکت

اولین انجام داده‌شده در شماره ۵۱ (شرکت بی‌پی)

1-Envelope
2-Oligo Analyzer
3-Oligo6
4-Gene Runner
5-BLAST
6-dNTPs
پروسه واکنش زنجیره‌ای پلی‌مرنا دوم طبق این برنامه انجام شد. دمای جدا شدن اولیه دو رشته گلو 95 درجه سانتی‌گراد به مدت 3 دقیقه.

دمای جدا شدن در رشته 94 درجه سانتی‌گراد به مدت 30 ثانیه و دمای جفت شدن پایانی با الگو 64 درجه به مدت 35 ثانیه. دمای پیشتری 72 درجه سانتی‌گراد به مدت 40 ثانیه. ۱۲ سیکل از مرحله ۲ تا ۴ تکرار شد. دمای پیشتری نهایی 72 درجه سانتی‌گراد به مدت 3 دقیقه بود.

برای Touchdown PCR ویروس نقص ایمنی انسان به این شرح بود:
واسرشتی اولیه در دمای 95 درجه سانتی‌گراد برا 3 دقیقه، واسرشتی ثانویه در 95 درجه سانتی‌گراد به مدت 5 ثانیه. دمای اتصال 60 درجه سانتی‌گراد براي 40 ثانیه و گسترش به مدت 5 ثانیه در دمای 72 درجه سانتی‌گراد اعمال شد. سپس 8 مرحله دیگر که هر کدام شعاع 3 دور، با دمای واسرشتی و گسترش مشاهده مرحله اول بودند انجام شد. در حالي که دمای اتصال در هر مرحله یک درجه نسبت به مرحله قبل از خود کاهش می‌یافت به صورتی که دمای اتصال در 2 دور نهایی به 52 درجه سانتی‌گراد رسید. در پایان، یک مرحله کسترش نهایی در دمای 72 درجه سانتی‌گراد به مدت 3 دقیقه انجام شد.

برای واکنش Touchdown PCR جهت این شرح بود: واسرشتی اولیه در دمای 95 درجه سانتی‌گراد برا 5 دقیقه، واسرشتی ثانویه در دمای 95 درجه سانتی‌گراد به مدت 5 ثانیه. دمای اتصال 50 درجه سانتی‌گراد برا 40 ثانیه و گسترش به مدت 5 ثانیه در دمای 72 درجه سانتی‌گراد اعمال شد. سپس 8 مرحله دیگر که هر کدام شعاع 3 دور، با دمای واسرشتی و گسترش مشاهده مرحله اول بودند انجام شد. در حالت که دمای اتصال در هر مرحله یک درجه نسبت به مرحله قبل از خود کاهش می‌یافت به صورتی که دمای اتصال در 2 دور نهایی به 52 درجه سانتی‌گراد رسید. در پایان، یک مرحله کسترش نهایی در دمای 72 درجه سانتی‌گراد به مدت 3 دقیقه انجام شد.

پرس از بهینه‌سازی اجزای واکنش، روش طراحی شده برروی 35 نمونه مثبت ویروس هیپاتیت جی و ویروس نقص ایمنی انسان: 5 کنترل منفی زنده انسانی و 5 نمونه از هرکدام از ویروس‌های هیپاتیت بی، ویروس T6 و هیپاتیت سی به عنوان کنترل منفی ویروسی انجام شد.

در تمامی نمونه‌های مثبت باند مورد نظر مشاهده شد. در حالی که در هیپاتیت B کنترل منفی انسانی و ویروسی هیپاتیت باندی مشاهده نشد.

پرس از بهینه‌سازی اجزای واکنش، روش طراحی شده برروی 35 نمونه مثبت ویروس هیپاتیت جی و ویروس نقص ایمنی انسان: 5 کنترل منفی زنده انسانی و 5 نمونه از هرکدام از ویروس‌های هیپاتیت بی، ویروس T6 و هیپاتیت سی به عنوان کنترل منفی ویروسی انجام شد.

در تمامی نمونه‌های مثبت باند مورد نظر مشاهده شد. در حالی که در هیپاتیت B کنترل منفی انسانی و ویروسی هیپاتیت باندی مشاهده نشد.
بحث و نتایج کلی

با توجه به اینکه کارایی برآورده در انرژی بیان و حساسیت روش، واکنش زنجیره‌ای پلی‌مران، هدف از این مطالعه را پدیدارسازی و بهبود پرتکش‌کننده برای نکب‌نگاران و همچنین Touchdown بوده.

نحوه اجرای پروپاگا تا حد زیادی کاهش پاک و تا کاملاً حذف شده(تصاویر ۱ و ۲) قابل ذکر است که اجرای پروسه Touchdown در موارد زیادی موجب بهبود کیفیت باندهای مشاهده شده گردید.

تصویر ۱: محصولات واکنش زنجیره‌ای پلی‌مران آشیانه‌ای Touchdown Nested PCR استاندارد. A: محصولات APAHAM ۲۰۰bp B: نمونه‌های ویروس هیپاتیت ج. ۲۰ مارکر

تصویر ۲: محصولات واکنش زنجیره‌ای پلی‌مران آشیانه‌ای Touchdown Nested PCR استاندارد. A: محصولات APAHAM ۲۰۰bp B: نمونه‌های ویروس نقش الیمنی انسان. ۲۰ مارکر
یک مشکل عمده و رایج در تکثیر زن‌ها با روش واکنش زن‌جزیره‌ای پلی‌مراز، خصوصاً در مورد زن‌جزیره‌ای پیچیده، مانند کوچک، ناخواسته در طیف محصولات مورد نظر است. این پدیده به طور معمول به علت اتصال نادرست یک یا هر دو پراپرم مورد استفاده در گروه مهندسی از یک منبع آلودگی خارجی یا داخلی می‌دهد (۲۲). در موارد زیادی این محصولات فرعی به دلیل شناسی پیشتر تکثیر قطعیکر کوچکتر نسبت به توالی‌های بزرگتر در واکنش، از نظر مقدار نهایی بترین می‌باشد. به طور معمول برای علیه برای این منطقه از کاهش مقدار منفی و افزایش دمای اتصال می‌شود که اغلب وقتکری و پرهزینه‌هستن (۱۷). آنانی پرتوپی و بروس نقط این انسان مقام به دارو، یک فاکتور اساسی برای اجرای برنامه نرم‌افزاری است. با توجه به اهمیت موضوعاتی از این قبیل و مشکلات تکثیر زن برای تشخیص این و پروس، حتی در تیتر بالای ۱۰۰۰ یکی در میلی لیتر، یا به رنگ برای تکثیر حساس و اختصاصی این و پروس، یک نیاز اساسی است (۲۲). روشی است که در آن Touch Down PCR واکنش زن‌جزیره‌ای پلی‌مراز ابداع یک می‌باشد و در ادامه به تدریج دمای اتصال کاهش می‌یابد. بدون ترتیب در دمای بالای یکی از اتصال پراپرم به ناحیه غیر اختصاصی دشوار می‌باشد فقط محصول خالص اولیه تولید می‌شود و در نتیجه چون قطعه اختصاصی اتصال پراپرم در محیط واکنش به
قبل و اکنن تشیع رهائی یولی مراز مکوس(۱) برای ساخت کتابخانه‌های cDNA و غربالگری SNP هما پیدا کرده است. برای تهیه انسدادی برای نمونه‌های مثبت است که تکنیک آنها مشکل است، اما به طور معمول برای افزایش حساسیت و تشکیل محصولات نیز به کار می‌رود(۸).

در مطالعه حاضر هزینه شکل‌گیری باندهای ناخواسته در واکنش استاندارد بی‌اری پروسه بدون این که اثر منفی در میزان محصول Touchdown نهایی ایجاد شود باند اضافی حذف شد. این توجه به سادگی این روش و نیز عدم ایجاد هزینه و مراحل کاری اضافی به نظر می‌رسد که استفاده از این پروتکل برای بهبود سازی سریع واکنش‌های زنجیره‌ای پلی‌مرناژ، روشنی منطقی و به صرفه‌باشند. توصیه می‌گردد در حالت بروخورد با باندهای ناخواسته که با روش‌های معمول بهبودی سازی حذف می‌شوند، استفاده از این پروسه قادر به رفع مشکل و حذف باند از یک مسیر سریع و با صرفه‌خواه بود.


tقیید و تشکر
نوبه‌ندگان از دانشگاه علوم پزشکی دانشگاه تربیت مدرس و همچنین کمیته تحقیقات دانشجویی که در انجام پژوهش حمایت مالی و معنی‌برنگی‌ند تشکر و قدردانی می‌نمایند.

۱-RT-PCR
Evaluation of Touchdown Nested PCR to Circumvent Spurious Priming and Increase Specificity during HIV and GBV-C Gene Amplification

Falashi SH*, Ravanshad M**, Kenarkohi O*, Ghanbari R, Haji Abdolbaghi M***.

*MSc in Virology, Department of Virology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
**Assistant Professor of Virology, Department of Virology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
***Professor of Infectious Disease Division, Department of Infectious Disease Division, Emam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran

ABSTRACT:

Introduction & Objective: Primer-Template hybridization temperature is one of the important parameters in Nested PCR optimization. Unlike instant temperature for sequence amplification in routine PCR process, Touchdown PCR is a modified form of standard PCR that employs a range of annealing temperature. This study intended to develop a Touchdown Nested PCR in order to circumvent spurious priming and enhancing specificity during gene amplification.

Materials & Methods: This is an experimental study conducted at Tarbiat Modarres University of Tehran during 2008-2009. Study samples were collected from Digestive Diseases Research Centre at Shari’ati Hospital and HIV research center – Imam Khomeini Hospital. After extracting the nucleic acid, primer designing for HIV and GBV-C and c-DNA synthesis; Nested PCR was performed on negative and positive samples using standard and touchdown protocols.

Results: The intended band was observed in all positive samples. No band was observed in any human and viral negative control samples. After electrophoresis of PCR products, non specific band were seen in HIV and GBV-C samples during standard PCR. Using the touchdown protocol, undesirable bands were omitted or significantly decreased.

Conclusion: In the present study, despite the formation of uncalled bands in standard reaction; using the touchdown method led to omission of non-specific bands without any significant effect on the final products. As for its simplicity, cost and time saving, it seems that using this method is a rational and economical way for fast optimization of PCR reactions.

Keywords: Touchdown Nested PCR, spurious priming, specificity, gene amplification
REFERENCES: